Norwegian University of Science and Technology
Department of Mathematical

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods
 Fall 2013

Sciences
Project 3

1 Quarteroni: Section 3.7: Exercise 4 and 5.

2 Write a MATLAB program for solving the Helmholtz problem

$$
-u_{x x}+\sigma u=f(x), \quad 0<x<1, \quad u(0)=u(1)=0 .
$$

or, using the weak formulation
find $u \in H_{0}^{1}(0,1)$ s.t. $\int_{0}^{1} u_{x} v_{x} d x+\sigma \int_{0}^{1} u v d x=\int_{0}^{1} f v d x$, for all $v \in H_{0}^{1}(0,1)$
by the finite element method on X_{h}^{2}, using the algorithm outlined in the supplementary note.
To test you code, let $\sigma=1, f=\sin (\pi x)$ in which case $u(x)=\sin (\pi x) /\left(1+\pi^{2}\right)$.
Use for example $[0,0.1,0.25,0.3,0.4,0.45,0.5,0.55,0.6,0.7,0.8,0.9,1]$ for the partition of the elements. (That is, the first element is $[0,0.1]$, and there is an extra node in the middle).
As already pointed out in Exercise 2.4, the discrete problem can be written as

$$
\begin{equation*}
(A+\sigma M) \mathbf{u}=\mathbf{b} . \tag{2}
\end{equation*}
$$

So the task is to set up the matrices A and M and the load vector \mathbf{b}, and solve the system. What you have to do is described in the following:
a) Preliminaries:

Set up the element matrices A_{h}^{K} and M_{h}^{K}, corresponding to contribution from element K to the first and second integrals of (1) resp.
b) Write a function computing integrals by the following quadrature formula:

$$
\int_{0}^{1} g(x) d x \approx \frac{1}{2}\left(g\left(c_{1}\right)+g\left(c_{2}\right)\right), \quad c_{1,2}=\frac{1}{2} \pm \frac{\sqrt{3}}{6} .
$$

This will be used for to approximate the contribution from an element to the load vector.
c) Assemble the prototype matrices \tilde{A}_{h} and \tilde{M}_{h} as well as the load vector $\tilde{\mathbf{b}}$.
d) Remove the rows and columns corresponding to the boundary conditions.
e) Solve (2), and plot the solution
f) Change the boundary conditions to $u(0)=1$ and $u_{x}(1)=2$. Which changes has to be done in the code?

