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Chapter 6

Linear Elasticity

6.1 GENERALIZED HOOKE’S LAW. STRAIN ENERGY FUNCTION

In classical linear elasticity theory it is assumed that displacements and displacement
gradients are sufficiently small that no distinction need be made between the Lagrangian
and Eulerian descriptions. Accordingly in terms of the displacement vector u, the linear
strain tensor is given by the equivalent expressions

1 /0w , ou 1 /0w | ou
b = & = MAQIN_ mlum_v = MAM.M mlauv =, tu)
or (6.1)
L=E = HuVy + Vxu) = 3V, + V,u) = ${uv + vu)

In the following it is further assumed that the deformation processes are adiabatic (no heat
loss or gain) and isothermal (constant temperature) unless specifically stated otherwise.

The constitutive equations for a linear elastic solid relate the stress and strain tensors
through the expression ~
£ P oy = Cpnten OF £ = CiE 6.2)
which is known as the generalized Hooke’s law. In (6.2) the tensor of elastic constants
Cinm has 81 components. However, due to the symmetry of both the stress and strain
tensors, there are at most 36 distinct elastic constants. For the purpose of writing Hooke’s
law in terms of these 36 components, the double indexed system of stress and strain com-
ponents is often replaced by a single indexed system having a range of 6. Thus in the
notation

o = 9 Oy T T T O
Gy = 0, o, = 0 = O (6.9)
Ty T @ Op = Oy T %
and &G = g 2oy = 26, = g
G T & 2y = 2 = & (6-4)
g1 T & 2 = 26 =
Hooke’s law may be written
op = Cryen (K,M=1,2,8,4,5,6) (6.5)

where Cxu represents the 36 elastic constants, and where upper case Latin subscripts are
used to emphagize the range of 6 on these indices.

When thermal effects are neglected, the energy balance equation (5.32) may be written

du 1 1 (6.6)

@ = Fuls = o
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,E..m internal energy in this case is purely mechanical and is called the strain energy (per
unit mass). From (6.6), .

du = M e.c&n: 6.7)

and if » is considered a function of the nine strain components, u =u(,), its differential
is given by

_ ou
du = ﬂ:&nc ?...wv
Comparing (6.7) and (6.8), it is observed that d
1 _ ou
rﬁlqnu _ mnlc AQ-@V

The strain energy density u* (per unit volume) is defined as
u* = pu (6.10)
and since p may be considered a constant in the small strain theory, #* has the property that

_ du. Nour
o 0= tup =t g (6.11)
m,cﬂnrmﬂ:.cnd. nw_m zero state of strain energy may be chosen arbitrarily; and since the stress
um:_m». vanish with the strains, the simplest form of strain energy function that leads to a
linear stress-strain relation is the quadratic form

u* = .wQ:win:mwi A%.NMV
From (6.2), this equation may be written
u* = Yoy, or u* = IX:E (6.13)

In the single indexed system of symbols, (6.12) becomes
u* = 3C, ey (6.14)

in which Cgu = Cux. Because of this symmetry on Cku, the number of independent elastic
constants is at most 21 if a strain energy function exists.

62 ISOTROPY. ANISOTROPY. ELASTIC SYMMETRY

If the elastic properties are independent of the reference system used to describe it, a
material is said to be elastically isotropic. A material that is not isotropic is called aniso-
tropic. Since the elastic properties of a Hookean solid are expressed through the coefficients
Crkwm, & general anisotropic body will have an elastic-constant matriz of the form

Cu Ci2 Cua Cu Cis Cus
Cyy Cz Cun Cu Cxs Cw

[Con] = Cst Ci2 Cum Cu Csi Cun (6.15)
Ciq Ciw Cia Cu Cis Cas y
Cst Cs2 Css Cu Css Cse

Qn_ Qam Qau Qz Qum Qaa

When a strain energy function exists for the body, Cxm = Cux, and the 86 constants in
(6.15) are reduced to 21.
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A plane of elastic symmetry exists at a
point where the elastic constants have the same
values for every pair of coordinate systems
which are the reflected images of one another
with respect to the plane. The axes of such
coordinate systems are referred to as “equiva-
lent elastic directions.” If the x:2. plane is one
of elastic symmetry, the constants Cxu are in-
variant under the coordinate transformation

Tl =3, T3 = Xz, %3 = —x3 (6.16)
as shown in Fig. 6-1. The transformation
matrix of (6.16) is given by

10
fes] = |0 1
0 0

[CHAP. 6

3

z,, 2} %3
Fig. 6-1
0
0 (6.17)
-1

Inserting the values of (6.17) into the transformation laws for the :am.w-. menm.mm and strain
tensors, (2.27) and (3.78) respectively, the elastic matrix for a material having z.z; as a

plane of symmetry is
Cuy Ci Cu
Cai Co Cn
Cn Ciz Cxn
[Crulow Fual e
0o 0
Ca Cer Ceas

0 0 Cuis

0 0 Cx

0 0 Cw (6.18)
Cu Cs O
QMA Quw o

0 0 Ces

The 20 constants in (6.18) are reduced to 13 when a strain energy function exists.

If a material possesses three mutually perpendicular planes of elastic symmetry, the
material is called orthotropic and its elastic matrix is of the form

Q: Q—N

Q.u-— QE

Cn Cx

[Cun] = oa oa
0 o0

)

0 0 0

0 0 0

TR (6.19)
Cu O 0

0 Cs O

0 0 Ces

having 12 independent constants, or 9 if Cxm = Cux-

An axzis of elastic symmetry of order N exists at a point when there are sets of equiva-
lent elastic directions which can be superimposed by a rotation through an angle of 2«/N
about the axis. Certain cases of axial and plane elastic symmetry are equivalent.

6.3 ISOTROPIC MEDIA. ELASTIC CONSTANTS

Bodies which are elastically equivalent in all directions possess complete mwman_m_ma, and
are termed isofropic. Every plane and every axis is one of elastic symmetry in this case.

B ——
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For isotropy, the number of independent elastic constants reduces to 2, and the elastic
matrix is symmetric regardless of the existence of a strain energy function. Choosing as
the two independent constants the well-known Lamé constants, A and #, the matrix (6.19)
reduces to the isotropic elastic form

A+2p A A 0 0 0

A A+2, A 0 0 0
(Con] = A A A+2: 0 0 0 (6.20)

0 0 0 » 0 0

0 0 0 0 » 0

0 0 0 0 0 m

In terms of A and x, Hooke’s law (6.2) for an isotropic body is written

oy = ASye, +2ue, or X = e+ 2uE (6.21)

where ¢=¢, = I This equation may be readily inverted to express the strains in terms
of the stresses as
e —A 1 e = 1"
¢ = 2.(32 +2p) 8,0, + Nlt.ﬂ: or E = 231+ 25) o+ % z (6.22)

where © =, =1, the symbel traditionally used in elasticity for the first stress invariant.

For a simple uniaxial state of stress in the z; direction, engineering constants F and v
may be introduced through the relationships o, = E¢,, and ¢, = ¢, = —ve,,. The constant
E is known as Young’s modulus, and v is called Poisson’s ratio. In terms of these elastic
constants Hooke's law for isotropic bodies becomes

E v E v
o, = T cAA:+W||N=m:nwrv or z i+, Am.fg_nv ?..N.wv
or, when inverted,

Ly =~ Bbo o E st (6.24)

i
From a consideration of a uniform hydrostatic pressure state of stress, it is possible to
define the bulk modulus,
_ E _ 3+ 2
Nlj or Nllml (6.25)

which relates the pressure to the cubical dilatation of a body so loaded. For a so-called state
of pure shear, the shear modulus G relates the shear components of stress and strain. G
is actually equal to x and the expression

. s = G = %ﬂ ?..MO.V

may be proven without difficulty.

64 ELASTOSTATIC PROBLEMS. ELASTODYNAMIC PROBLEMS

In an elastostatic problem of a homogeneous isotropic body, certain field equations,
namely,

(a) Equilibrium equations,

Q:L.Tﬁvm =0 or VZ+pb =10 (6.27)
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’s 1 .
e S = Moy +t2pq, oOr I = Mc+2E (6.28)

oy
(¢) Strain-displacement relations,

o = ¥ +u) or E = HuV+Vu) (6.29)
must be satisfied at all interior points of the body. Also, prescribed conditions on stress
and/or displacements must be satisfied on the bounding surface of the body.

The boundary value problems of elasticity are usually classified according to boundary
conditions into problems for which
(1) displacements are prescribed everywhere on the boundary,
(2) stresses (surface tractions) are prescribed everywhere on the boundary,
(3) displacements are prescribed over a portion of the boundary, stresses are prescribed
over the remaining part.
For all three categories the body forces are assumed to be given throughout the continuum,

For those problems in which boundary displacement components are given everywhere
by an equation of the form u = 9(X) or  u= gX) (6.90)

the strain-displacement relations (6.29) may be substituted .mseo H.moo_.S_m law (6.28) and the
result in turn substituted into (6.27) to produce the governing equations,
i+ A+ phu, , + pb, =0 or aV2u+ A+p)YV-u+pb =0 (6.31)
i i i i i f problem is
which are called the Navier-Cauchy equations. The mo::uo:. om. this type o
therefore given in the form of the displacement vector w,, satisfying (6.81) throughout the
continuum and fulfilling (6.80) on the boundary.
For those problems in which surface tractions are prescribed everywhere on the
boundary by equations of the form
3.0 = om or ™ = T8 (6.32)
the equations of compatibility (3.104) may be combined A-#r Hooke's law (6.24) and the
equilibrium equation (6.27) to produce the governing equations,

1
) . 1 o T 115
: or

v

Ty + pb tb) + Hl<m=\.ex.x =0

1
1+v

i-Mi i ibili lution for this
which are called the Beltrami-Michell equations of 85@&3.5_.@. ) The sol
type of problem is given by specifying the stress tensor which satisfies (6.33) throughout
the continuum and fulfills (6.82) on the boundary.

For those problems having “mixed” boundary conditions, the system o.m equations AM.N_MV.
(6.28) and (6.29) must be solved. The solution gives the mmnmmu and displacement nm. s
throughout the continuum, The stress components must satisfy ?..nwmv over some voa ion
of the boundary, while the displacements satisfy (6.80) over the remainder of the boundary.

v

VVe + p(Vb+bVv) + 7=—hVb = 0 (6.9)

Vi +

In the formulation of elastodynamics problems, the equilibrium equations (6.27) must
be replaced by the equations of motion (5.16)

+ pb, = t.m. or V-Z+pb = pv (6.54)

%ijg
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and initial conditions as well as boundary conditions must be specified. In terms of the
displacement field w, the governing equation here, analogous to (6.81) in the elastostatic
case is

By + ()i b = pll,  or  uVPm+ (A +p)VV-uth = o0 (6.95)

Solutions of (6.85) appear in the form = ui(x,t) and must satisfy not only initial condi-
tions on the motion, usually expressed by equations such as

u = u(x,0) and % = i(x,0) (6.86)
but also boundary conditions, either on the displacements,

% = g(x,f) or u = gxt) (6.87)
or on the surface tractions,

muv = 2»,?&3 or W = Q??.& (6.38)

6.5 THEOREM OF SUPERPOSITION. UNIQUENESS OF SOLUTIONS.
ST. VENANT PRINCIPLE

Because the equations of linear elasticity are linear equations, the principle of super-
position may be used to obtain additional solutions from those previously established. If,
for example, of’,u{" represent a solution to the system (6.27), (6.28) and (6.29) with body
forces b{"’, and of?’,u{® represent a solution for body forces b, then oy = o + o,
u, = u{” +u{® represent a solution to the system for body forces b, = b +b®™.

The uniqueness of a solution to the general elastostatic problem of elasticity may be
established by use of the superposition principle, together with the law of conservation of
energy. A proof of uniqueness is included among the exercises that follow.

St. Venant's principle is a statement regarding the differences that occur in the stresses
and strains at some interior location of an elastic body, due to two separate but statically
equivalent systems of surface tractions, being applied to some portion of the boundary.
The principle asserts that, for locations sufficiently remote from the area of application
of the loadings, the differences are negligible. This assumption is often of great assistance
in solving practical problems.

6.6 TWO-DIMENSIONAL ELASTICITY. PLANE STRESS AND PLANE STRAIN

Many problems in elasticity may be treated satisfactorily by a two-dimensional, or
plane theory of elasticity. There are two general types of problems involved in this plane
analysis. Although these two types may be defined by setting down certain restrictions
and assumptions on the stress and displacement fields, they are often introduced descrip-
tively in terms of their physical prototypes. In plane stress problems, the geometry of
the body is essentially that of a plate with one dimension much smaller than the others.
The loads are applied uniformly over the thickness of the plate and act in the plane of the
plate as shown in Fig. 6-2(a) below. In plane strain problems, the geometry of the body is
essentially that of a prismatic cylinder with one dimension much larger than the others.
The loads are uniformly distributed with respect to the large dimension and act per-
pendicular to it as shown in Fig. 6-2(b) below.
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E2% £ ]

z, x5

(a) (%)
Fig. 6-2

For the plane stress problem of Fig. 6-2(a) the stress ooBvosmEﬁ. Oy 1 0,y are taken
as zero everywhere, and the remaining components are taken as functions of z; and z: only,

Oap = an?«ﬁﬂ»v (e, 8= 1,2) (6.39)
Accordingly, the field equations for plane stress are
(a) Oapn+pba =0 or V+-Z+pb=20 (6.40)
_ 14y v HH.T:MI“-@
A@V €ag — E Oag — Manﬂi or E E E ?..&NV
€3 = |WQ=E
() € = Htgpg+u,,) or E=3uv+vu) (6.42)
i i =28 +2% and
in which v = im ot T ag e
0
T %2 0 G G2
zh= Co Ty 0 ’ E = €9  €n 0 ?..tv
0o 0 0 0 0 o

Due to the particular form of the strain tensor in the plane stress case, the %N compatibility
equations (3.104) may be reduced with reasonable accuracy for very thin plates to the

single equation (6.44)

Gty = Zgap

In terms of the displacement components ., the field equations may be combined to give
the governing equation

E 2 E =90 E_ Gt L gy.u+ph=0
S+ Vet Ty hase b o 4w 21—7 (6.45)
a* 2*
where V* = pre +msu i

For the plane strain problem of Fig. 6-2(b) the displacement component 3 is taken as
zero, and the remaining components considered as functions of z; and z. only,

Ua = UalZ1, T2) (6.46)
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In this case, the field equations may be written

An‘v Tops + v&n =0 or V'Z+ t—- = 0 A%&Qv
(d) Tag = Ayt + Zpey, or I = Ae+ 24E
0 (6.48)
Oy = Vo4 = i [
(c) €ap = HUas+up,) oOr E = }uv + Vu) (6.49)
oy o 0 & G 0
in which I = o, o, O and E = ¢, ¢ O (6.50)
0 0 o 0o 0 o

From (6.47), (6.48), (6.49), the appropriate Navier equation for plane strain is
2V, + A+ p)ugp, +pb, = 0 or aVu+ A+ ) 9T u+pb = 0 (6.51)

As in the case of plane stress, the compatibility equations for plane strain reduce to the
single equation (6.44).

If the forces applied to the edge of the plate in Fig. 6-2(a) are not uniform across the
thickness, but are symmetrical with respect to the middle plane of the plate, a state of
generalized plane stress is said to exist. In formulating problems for this case, the field
variables o,5, ¢, and u, must be replaced by stress, strain and displacement variables
averaged across the thickness of the plate. In terms of such averaged field variables, the
generalized plane stress formulation is essentially the same as the plane strain case if A is
replaced by 5

V.

P 2
— A+2 T 1= (6.52)

A case of generalized plane strain is sometimes mentioned in elasticity books when &
is taken as a constant other than zero in (6.50).

6.7 AIRY’S STRESS FUNCTION

If body forces are absent or are constant, the solution of plane elastostatic problems
(plane strain or generalized plane stress problems) is often obtained through the use of: the
Airy stress function. Even if body forces must be taken into account, the superposition
principle allows for their contribution to the solution to be introduced as a particular
integral of the linear differential field equations.

For plane elastostatic problems in the absence of body forces, the equilibrium equations
reduce to
oapp =0 or V¥-X=0 (6.59)
and the compatibility equation (6.44) may be expressed in terms of stress components as
Vo, +ay,) =0, Vi, = 0 (6.54)
The stress components are now given as partial derivatives of the Airy stress function
¢ = ¢(x1,x2) in accordance with the equations

Tu = P T2 T T I = $y (6.55)
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The equilibrium equations (6.53) are satisfied identically, and the compatibility condition
(6.54) becomes the biharmonic equation

THI) = Vi = b T 20 T b T 0

Functions which satisfy (6.56) are called biharmonic functions. By nesmmmmluw biharmonic
functions with single-valued second partial derivatives, ==5m~.m.=m solutions to .n.::..m elasto-
static problems may be constructed, which satisfy wc_."oa_wsnm:w both equilibrium and
compatibility. Of course these solutions must be tailored to fit whatever boundary

conditions are prescribed.

(6.56)

6.8 TWO-DIMENSIONAL ELASTOSTATIC PROBLEMS IN POLAR COORDINATES
Body geometry often deems it convenient to formulate nﬂ?&gmsmmosm_ m_wmeo%w_:o
problems in terms of polar coordinates 7 and 6. Thus for transformation equations

z; = rcosd, z2 = r8iné (6.57)

the stress components shown in Fig. 6-3 are found to lead to equilibrium equations in

the form in
89,7 W?:,: B Y% "% L R = 0 (6.58)

ar r a0 r
1 99, + 9910 + 20, +Q =0 (6.59)

r 90 oar r

in which B and Q represent body forces per unit volume in the directions shown.

£ ]

Fig. 6-3

Taking the Airy stress function now as & = &(r, 6), the stress components are given by

ol By L 6.60
S = mm.fﬁum% ( )
Ty = T@fOT° (6.61)
_ _9 (1l 6.62
Yoo T ar Aﬂ %V ! (6.62)
The compatibility condition again leads to the biharmonic equation
VATH) = T =0 (6.69)

; ., ® ,1a  1&
but, in polar form, V* = g5 + o0 + e
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69 HYPERELASTICITY. HYPOELASTICITY

Modern continuum studies have led to constitutive equations which define materials
that are elastic in a special sense. In this regard a material is said to be hyperelastic if it
possesses a strain energy function U such that the material derivative of this function is
equal to the stress power per unit volume. Thus the constitutive equation is of the form

d 1 1 .,

HAS = Mq:U: = M R] (6.64)
in which D;; is the rate of deformation tensor. In a second classification, a material is said
to be hypoelastic if the stress rate is a homogeneous linear function of the rate of deforma-
tion. In this case the constitutive equation is written

o5 = KynDim (6.65)
in which the stress rate o7, is defined as
d

oy = m?cv — o, Vy — 0.V (6.66)

where V,, is the vorticity tensor.

6.10 LINEAR THERMOELASTICITY

If thermal effects are taken into account, the components of the linear strain tensor €
may be considered to be the sum

o = P HD (6.67)

FiEnw&m:m?mnonenmgsobmn.oEz_mmﬂnmmm mmamsm..mdmmgm noaenmuzmou?osgm
temperature field. Due to a change from some reference temperature T, to the temperature
T, the strain components of an elementary volume of an unconstrained isotropic body are
given by

" = «T— T35, (6.68)

where « denotes the linear coefficient of thermal expansion. Inserting (6.68), together with
Hooke's law (6.22), into (6.67) yields

1 A
6 = N AQ: - wﬂ.NIt m:erv + oT— Q.ev.w: (6.69)

which is known as the Duhamel-Neumann relations. Equation (6.69) may be inverted to
give the thermoelastic constitutive equations

oy = A8 g, + 2pne, — Aw>+N¥vnm:Q.| T) (6.70)

Heat conduction in an isotropic elastic solid is governed by the well-known Fourier law
of heat conduction,
(6.71)

where the scalar k, the thermal conductivity of the body, must be positive to assure a
positive rate of entropy production. If now the specific heat at constant deformation ¢ is
introduced through the equation .

—¢,, = pcT (6.72)

and the internal energy is assumed to be a function of the strain components € and the
temperature T, the energy equation (5.45) may be expressed in the form
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E..,u%:i..iw:ma»ﬁ_m._ S.E
which is known as the coupled heat equation.

The system of equations that formulate the general thermoelastic problem for an
isotropic body consists of

(¢) equations of motion oy tob =i, or V-I+sb =i (6.75)

(b) thermoelastic constitutive equations

oy = Ay + 2pe, — (BA +2p)ad (T~ T,) 675)
or
T = Ale+ 24E — (3A +2p)al(T — Q.ev

(c) strain-displacement relations
o = ¥y, +u) or E= #uv + Vu) (6.76)

(d) coupled heat equation
kT, = %Eu.. + (B +2w)aT b, or kVT = pcT + (Br+2u)aT i (6.77)

i i temperature fields, subject to
This system must be solved for the stress, m_mv_wnmﬂ.mﬂe and ture 8
nuunoulwﬁm initial and boundary conditions. In addition, the compatibility equations must
be satisfied.

i i i i he inertia and coupling effects
There is a large collection of problems in which both _" E
may be neglected. For these cases the general thermoelastic .ﬁnoEmB decomposes into ?cro
separate problems which must be solved noswmncaa.m_«. but Gmmum:mo:z% Thus for the
uncoupled, quasi-static, thermoelastic problem the basic equations are the

(a) heat conduction equation
KT, = pe»T or kV?T = pcoT (6.78)

(b) equilibrium equations
+pb,=0 or V-Z+pb=20 (6.79)

ijg

(c) thermoelastic stress-strain equations
oy = >~:n§ + Ntna - (3 +Ntvﬂm:Aﬁ<l N.ov

or (6.80)

T = Ale+ 2pE — (32 +2u)al(T — N.av

(d) strain-displacement relations
¢ = Hu,,+u,) or E = }{Vu+uyvy) (6.81)
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Solved Problems

HOOKE’S LAW. STRAIN ENERGY. ISOTROPY (Sec. 6.1-6.3)

6.1.

6.2

6.3.

6.4,

6.5.

Show that the strain energy density u* for an isotropic Hookean solid may be
expressed in terms of the strain tensor by u* = MtrE)%/2 + 4E:E, and in terms of
the stress tensor by u* = [(QA+0)Z: 3 - o(tr=)7/2E.

Inserting (6.21) into (6.13), u* = (A8yyepx + 2uey) /2 = Aeie/2 + peyye;  which in symbolic
notation is u* = A(tr€)2/2 + €k

Inserting (6.24) into (6.18), u* = a1+ r)oy = r3i04,)/2E = [a+ La.\:l rouey]/2E which in
symbolic notation is u* = [(1+,)E:% — »(tr 2)2}/2E.

Separating the stress and strain tensors into their spherical and deviator components,
express the strain energy density »* as the sum of a dilatation energy density u(s,
and distortion energy density wufp,.

Ingerting (2.98) and (2.70) into (6.13),
ut = s+ n»xa.\wx«: + eppdy/3) = Yaye; + oue3/3 + 8ye,/3 + oye/3)

and since e, = a; = 0 this reduces to u* = ulsy + uipy = oy 6+ 80,2,

Assuming a state of uniform compressive stress o, = —p8,, develop the formulas
for the bulk modulus (ratio of pressure to volume change) given in (6.25).
With a; = --pd;;, (6.24) becomes g5 = [(1+ o) (~psy) + »33p)l/E and so e = [-3p(1 +») +

Sprf/E. Thus K =—pley=FE/3(1~2). Likewise from (6.21), oy = (3A+2u)ey = —8p 50 that
K = (3n+ 2u)/3.

Express u%, and ug,, of Problem 6.2 in terms of the engineering constants X and G
and the strain components.

From a result in Problem 6.3, oy = 3Ke; and so
ulsy, = a6 = Keyey/2 = K(I)%/2

From (6.21) and (2.70), 9i; = Mijer + 2peyy = 8y + 045, 8;/3 and since o = (8\ +2p)e; it follows
that s = 2u(e;;— e 8;;/3). Thus

ulpy = 2pley— exiBii/B) ey — eppdyy/3)/2 = aleijer) — eyes/3)

Note that the dilatation energy density ﬁnﬂ appears as a function of K only, whereas the distortion
energy u{p, is in terms of # (or G), the shear modulus.

Ki
Cr, are not necessarily symmetrical. Show that this equation may be written in the
form of (6.14) and that 0u*/de, = o,.

Write the quadratic form as

In general, «* may be expressed in the quadratic form wu* = Crmexen in which the

u* = }Cruexen + JCrmenen = YCuexen + §Chyenep = HCitu + Chidegers = ACkmexens
where Cgy = Cy.

Thus the derivative du*/deg is now

oy = JCxplex,pen + exerr,n) = 3Cxml8xrens + ex8yr) = Y(Crmen + Crpex) = Crmem = op



