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1 A steady convection-diffusion problem

Let us consider the one-dimensional convection-diffusion problem

—KUgz +Uuz = f in =(0,1), (1)
u(0) = 0, (2)
u(l) = 1. (3)

Here, u represents temperature, x represents the thermal conductivity, f rep-
resents a volumetric heat source, and U is a constant. We can think of U as
representing a divergence-free (or incompressible) velocity field which is given.
Dirichlet boundary conditions are prescribed at £ = 0 and x = 1. The length
of the domain is L = 1.

The (dimensionless) Peclet number associated with the physical problem is

UL
R

P (4)

and it measures the importance of convection relative to diffusion.

1.1 The case with f=0and U =1

Let us first consider the case with f = 0. The analytical solution for this case
is given as

erls 1
u(@) = ey (5)
where
K

Let us further assume that U = 1, i.e., the “wind” is blowing from left to right.
If € is small compared to L, the length of our domain, we get a boundary layer
of thickness € near = 1. Outside this thin boundary layer, the solution is
approximately equal to zero.

A useful way of representing this type of solution is by considering the total
solution as the sum of two parts: an inner boundary layer solution, Uinner ,
given by (5), and an outer solution uUsuter = 0, i.e.,

’U,(l') = Uinner + Uouter - (7)

Note that, outside the boundary layer, the diffusion term & u., is small com-
pared to the convection term U u,. Hence, outside the boundary layer, u; ~
f/U = 0. Together with the boundary condition u(0) = 0, we get Uoyter = 0.



1.2 The case with f =0.5 and U = +1

First, consider first the case with f = 0.5 and U = 1. This is the same as the
previous case, except for the fact that f = 0.5. Again, we can represent the
solution as the sum of an inner solution and an outer solution. The inner solution
is proportional to the solution given in (5). The outer solution is given by solving
(—f’;uomer = f/U = 0.5 with Ueyzer(0) = 0, which has the solution %ouser = 0.5 T.
Combining the two solutions and applying the boundary condition at z = 1
gives

u(:z:) = Uinner + Uouter (8)
ev/s — 1

It is readily seen that this solution satisfies both the differential equation (1)
and the boundary conditions (2) and (3).

Next, consider the case with f = 0.5 and U = —1, i.e., the “wind” is blowing
from right to left. We thus expect the solution to exhibit a boundary layer of
thickness € near z = 0.

Following the same procedure as before, we express the total solution as

U(CL') = Uinner T Uouter (10)
1—e~%/®

1.3 Weak formulation

Let us now give the weak formulation of the one-dimensional convection-diffusion
problem (1)-(3). To this end, we first define the function spaces

XP = {ve HY{Q)|v(0)=0;v(1) =1}, (12)
X = {ve HY(Q)|v(0)=0;v(1) =0} = H}(Q). (13)

The weak form of (1)-(3) can then be expressed as: Find u € XD such that

alu,v) = l{v) Yve X, (14)
with
1
alw,v) = /(nwmvz + Uwgv)de (15)
0
llv) = /1fvd:1: . (16)
0

When U = 0, we recover the Poisson problem. Note that the bilinear form a(-, )
is nonsymmetric when U = 0.



1.4 Discrete formulation

Our discrete formulation is based upon the weak formulation. In particular, we
assume that we use K finite elements, TF, k = 1, ..., K, and that the numerical
solution is approximated as a first-order polynomial over each element (i.e., we
use linear elements).

Mathematically, we define our finite-dimensional subspaces as

XpP = {veXxPlu, e (T, k=1,.,K}, (17)
h
Xn = {veX|y, € P(TF), k=1,..,K} . (18)
h
The discrete problem can now be stated as: Find uy € X such that
alup,v) = l(v) Yve Xp . (19)

Hence, our numerical solution is piecewise linear, it is continuous across the
elements, and it satisfies the prescribed Dirichlet boundary conditions.

1.5 Algebraic formulation

As usual, we choose nodal bases for X ,? and Xp:

N

Yo e XP, v(z) = Z'Ui @i (x) + It (20)
z-—]\‘ll

Vv € Xy, v(z) = Zvi oi(z) . (21)
g=1

(22)

A few remarks: First, note that K = N + 1. Second, note that we add the
(hat) basis function ¢n41 associated with the right end point because of the
inhomogenous Dirichlet boundary condition u(z = 1) = 1. Third, note that,
Vv € Xh, 7.!(16()) = U(;L’N_H) =0.

Inserting these bases into the discrete formulation, we arrive at a set of
algebraic equations

Apun=FEy (23)
where
N
un(z) =Y uni 6:(T) + P (24)
i=1
and
Uy, = [Un1, Un2, -~--,UhN]T . (25)



Because we are using a nodal basis, the unknowns represent the numerical so-
lution at the internal global points z;, i =1,...,N.

We assemble the global matrix 4, by adding up all the elemental contri-
butions. The element matrix AF associated with the bilinear form (15) can be

expressed as
k K 1 -1 U -1 1
'A"‘:h_k(—l 1>+"2'(—1 1>' (26)

Here, h* is the length of element TF, k= 1,..., K.
The (local) grid Peclet number is defined as

s_ UM

P, = Peg -

(27)

Note that the grid Peclet must be thought of as a locally defined quantity for
a nonuniform grid. We know that, on a uniform grid, the numerical solution
can exhibit oscillations when the grid Peclet number is greater than 2. In
order to avoid having to resolve a thin boundary layer, but still being able
to resolve the outer solution, it is common to use upwinding. In the finite
element context, this is achieved by adding a controlled amount of diffusion in
the streamwise direction. In particular, in IR!, instead of using the physical
thermal conductivity x, we use the modified conductivity

R=k+U— (28)

E=¢€c+ — . (29)

The boundary layer thickness will thus be € instead of €. For a fixed discretiza-
tion, the numerical solution will have a boundary layer of no less than i‘; even
if € — 0. In this case, the numerical error will be O(1) in the vicinity of the
boundary layer. On the other hand, we obtain a stable solution. If f varies
slowly, the outer solution will typically be well resolved.



1.6 Extension to two and three dimensions

The finite element procedure just described can be extended to two and three
space dimensions. The key ingredients are:

o Use the weak form as a point of departure for the discretization.
¢ Decompose the domain into elements (triangles, squares, etc.).

e Construct all the elemental matrices A’ﬁ, k =1,..., K. For each element,
modify the diffusivity in the streamwise direction only, and similar to the
one-dimensional procedure described above. In order to achieve this, we
need to introduce a tensor-diffusivity, i.e., a diffusivity which depends on
the spatial direction.

e Assemble the global matrix A; and the global right hand side F, from the
elemental contributions, and by using a local-to-global numbering scheme.

¢ Solve the system of algebraic equations, Ay u, = F}, for the nodal values
Up.

1.7 Solution method

‘We now comment on solving the system of algebraic equations
Apu, = Fy (30)

for the nodal values u,, where A, is the discrete convection-diffusion operator
(non-symmetric), and F, is a known right hand side.

If we use a direct solver, we can use a banded solver or a sparse solver for
non-symmetric matrices. Note that pivoting may be necessary.

If we use an iterative solver, we cannot use the conjugate gradient method
because 4;, is not symmetric. However, we can use a solver like the GMRES
(General Minimum RESidual) method. Irrespective of which type of iterative
solver we use, we will typically need a good preconditioner in order to limit the
number of iterations, or in order to obtain convergence at all. Note that, if
the Peclet number is high (i.e., convection-dominated problems), the need for
having a good preconditioner increases.



1.8 Numerical results

We now discuss a series of numerical results obtained for the one-dimensional
convection-diffusion problem (1)-(3). We note that almost all the numerical
solutions are obtained using K = 20 linear finite elements, i.e., N = 19.

We start with the case f = 0and U = 1. In Figure 1 and Figure 2, the Peclet
number P = 4, while the grid Peclet number P, = 0.2 (uniform grid). Since
P, <« 2, upwinding is not really necessary for stability. Figure 1 shows that
the numerical solution is very close to the analytical solution, while upwinding
thickens the boundary layer with h*/2 = 0.025; see Figure 2.

In Figure 3 and Figure 4, we show similar results for P = 20 and P, = 1.
Again, no upwinding is needed for stability. In this case, the boundary layer
thickness is € = 0.05. Adding upwinding increases the boundary layer thickness
to & = e + h*/2 = 0.05 4+ 0.025 = 0.75, i.e., a 50% relative increase.

In Figure 5 and Figure 6, the Peclet number is increased to P = 100, while
using the same grid as before; hence, the grid Peclet number is now Py = 5. As
expected, we now get oscillations in the numerical solution without upwinding,.
Adding upwinding will fatten the boundary layer, while giving an accurate outer
solution Ueyter = 0.

A more extreme situation is shown in Figure 7 and Figure 8 where P = 500
and P, = 25 » 1. We now get oscillations over the entire computational
domain. Adding upwinding gives a stable solution with no oscillations. In this
case, the error near ¢ = 1 is large, while the outer solution uyyier = 0 is well
represented.

From the previous results, it appears natural to consider the use of a nonuni-
form grid. In particular, let the global nodes be be distributed as follows

Tt

(1—cos(N+1

T = ) i=0,1,..,N+1. (31)

DO

This compares with a uniform grid where the global nodes are given as

1

i =0,1,..., N +1.
g = 0L N+l (32)

:Ei=i

The length (or diameter) of each element TF is given by
he = zp — Ty . (33)

For the nonuniform distribution (31), the element size is smallest near the
boundaries x = 0 and & = 1, while the element size is biggest in the mid-
dle of the domain. For the uniform distribution (32), all the elements have the
same length h = 1/(N + 1).

We reconsider the case P = 100, but now using a nonuniform grid. The
number of grid points is the same as before. If we compare the numerical
solution in Figure 9 with the earlier solution in Figure 5, we notice a great



improvement. This can partly be understood by noticing that the local grid
Peclet number is now less than 2 near the boundaries; see Figure 10.

We now discuss some numerical results for the case f = 0.5. In order to
limit the discussion, we consider the case P = 100. First, let U = 1. Figure 11
shows the numerical solution in the case of using a uniform grid. As expected,
we get oscillations near the right boundary. Adding upwinding removes the
oscillations, see Figure 12, but fattens the boundary layer; however, the outer
solution is well resolved.

Next, we consider the case P = 100 and U = —1. We arrive at the same
conclusion as in the previous case; see Figure 13 and Figure 14.

Again, we consider the cases P = 100 and U = #1, but now using a nonuni-
form grid given by (31). For the same number of elements as before, we see a
significant improvement; see Figure 15 and Figure 16.

For a fized number of elements, we see that that we can improve the nu-
merical results by considering a nonuniform grid which takes into account the
particular solution structure. In addition, we can also apply upwinding. We
remark that we can, of course, also improve all the previous results by increas-
ing the number of elements (with an associated increase in the computational
cost). As an example, we show in Figure 17 the numerical solution for the case
P = 100 and when using a uniform grid with K = 100 elements (i.e., 5 times
as many elements as in Figure 5 and Figure 9). As expected, the numerical
solution is now resolved over the entire domain.



Steady convection—diffusion (P=4; Pg=0.2)
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Figure 1: A comparison between the exact solution (solid line) and the finite
element solution (dashed line) in the case of using a uniform grid with K = 20
elements, x = 0.25, U = 1 and f = 0. The Peclet number is P = 4, while the
grid Peclet number is Py = 0.2. No upwinding is applied.

Steady convection—diffusion {(P=4; Pg=0.2; upwinding & uniform grid)
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Figure 2: Same case as described above, but now using upwinding.



Steady convection~diffusion (P=20; Pg=1)
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Figure 3: A comparison between the exact solution (solid line) and the finite
element solution (dashed line) in the case of using a uniform grid with K = 20
elements, x = 0.05, U = 1 and f = 0. The Peclet number is P = 20, while the
grid Peclet number is P, = 1. No upwinding is applied.

Steady convection-diffusion (P=20; Pg=1; upwinding & uniform grid)
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Figure 4: Same case as described above, but now using upwinding,.
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Steady convection-diffusion (P=100; P§:5)
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Figure 5: A comparison between the exact solution (solid line) and the finite
element solution (dashed line) in the case of using a uniform grid with K = 20
elements, x = 0.01, U = 1 and f = 0. The Peclet number is P = 100, while the

grid Peclet number is P, = 5. No upwinding is applied.

Steady convection-diffusion (P=100; Pg=5; upwinding)
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Figure 6: Same case as described above, but now using upwinding.
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Steady convection—diftusion (P=500; Pg=25)
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Figure 7: A comparison between the exact solution (solid line) and the finite
element solution (dashed line) in the case of using a uniform grid with K = 20
elements, k = 0.002, U = 1 and f = 0. The Peclet number is P = 500, while

the grid Peclet number is P, = 25. No upwinding is applied.

Steady convection-diffusion (P=500; Pg:zs; upwinding & uniform grid}
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Figure 8: Same case as described above, but now using upwinding.
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Steady convection—diffusion (P=100; nonuniform grid)
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Figure 9: A comparison between the exact solution (solid line) and the finite
element solution (dashed line) in the case of using a nonuniform grid with K =
20 elements, k = 0.01, U = 1 and f = 0. The Peclet number is P = 100, while
the grid Peclet number is variable (see below). No upwinding is applied.
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Figure 10: A plot of the grid Peclet number in the case of using a nonuniform
grid. The grid Peclet number is marked as a circle located at the center of each
element. The grid Peclet number varies between approximately 8 in the center
of the domain to less than 2 near the boundaries.
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Steady convection-diffusion (P=100; Pg=5; 1=0.5)
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Figure 11: A comparison between the exact solution (solid line) and the finite
element solution (dashed line) in the case of using a uniform grid with K = 20
elements, x = 0.01, U = 1 and f = 0.5. The Peclet number is P = 100, while

the grid Peclet number is P, = 5. No upwinding is applied.

Steady convection-diffusion (P=100; Pg:S; 1=0.5; upwinding)
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Figure 12: Same case as described above, but now using upwinding.
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Steady convection-diffusion (P=100; Pg:s; #=0.5; U=~1)
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Figure 13: A comparison between the exact solution (solid line) and the finite

element solution (dashed line) in the case of using a uniform grid with K = 20
elements, k = 0.01, U = —1 and f = 0.5. The Peclet number is P = 100, while

the grid Peclet number is Py = 5. No upwinding is applied.

Steady convection—diffusion (P=100; Pg:s; 1=0.5; U=~1; upwinding)
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Figure 14: Same case as described above, but now using upwinding.
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Steady convection-diffusion (P=100; £=0.5; nonuniform grid}
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Figure 15: A comparison between the exact solution (solid line) and the finite
element solution (dashed line) in the case of using a nonuniform grid with K =
20 elements, x = 0.01, U = 1 and f = 0.5. The Peclet number is P = 100, while
the grid Peclet number is variable; see Figure 10. No upwinding is applied.

Steady convection—diffusion (P=100; =0.5; U=-1; nonuniform grid)
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Figure 16: Same case as described above, but with U = —1.
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Steady convection—diffusion (P=100; PQ:T)
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Figure 17: A comparison between the exact solution (solid line) and the finite
element solution (dashed line) in the case of using a uniform grid with K = 100
elements, k = 0.01, U = 1 and f = 0. The Peclet number is P = 100, while the
grid Peclet number is F; = 1. No upwinding is applied.






