TMA4220: Numerical solution of partial
differential equations by element methods

Steady Convection-Diffusion Equation:
Finite Element Solution; Theory

March 18, 2002

Einar M. Rgnquist
Department of Mathematical Sciences
NTNU, N-7491 Trondheim, Norway



1 Model problem

Let us consider the one-dimensional convection-diffusion problem

—KUge +Uu = f in Q9=(0,1), (1)
u(0) = 0, (2)
uw(l) = 0. 3)

Here, u represents temperature, s represents the thermal conductivity, f rep-
resents a volumetric heat source, and U is a constant. We can think of U as
representing a divergence-free {(or incompressible) velocity field which is given.
Homogeneous Dirichlet boundary conditions are prescribed at = 0 and z = 1.
The length of the domain is L = 1.
The (dimensionless) Peclet number associated with the physical problem is
UL

P===, | (@

and it measures the importance of convection relative to diffusion.

1.1 Weak formulation

Let us now give the weak formulation of the one-dimensional convection-diffusion
problem (1)-(3). To this end, we first define the usual function space

X ={ve HY(Q) | v(0) =0; v(1) = 0} = H3 (Q). (5)

The weak form of (1)-(3) can then be expressed as: Find u € X such that

a(u,v) = l{v) Yve X , (6)
with
a(w,v) = /1(/<; WeUy + Uwgv)de (7
0
1
{v) = fo fodx . : (8)

When U = 0, we recover the Poisson problem. Note that the bilinear form a(-, -)
is nonsymmetric when U # 0, i.e., a{w,v) # a{v, w).
1.2 Discrete formulation

Our discrete formulation is based upon the weak formulation. In particular, we
assume that we use K finite elements, 7F, k = 1, ..., K, and that the numerical



solution is approximated as a first-order polynomial over each element (i.e., we
use linear elements).
Mathematically, we define our finite-dimensional subspaces as

Xp={veX| Ul € P (Tf), k=1,..,K} . (9)

The discrete problem can now be stated as: Find up € X}, such that
a{un,v) = l(v) Yo e X, . (10)

Hence, our numerical solution is piecewise linear, it is continuous across the
elements, and it satisfies the prescribed homogeneous Dirichlet boundary con-
ditions.

1.3 Algebraic formulation

As usual, we choose a nodal basis for X3:

N
Yo € X, v(z) = > v ¢i(z) . , (11)
)
(12)
Note that K = N + 1, and that Yv € X3, v(zo) = v(zn41) = 0.

Inserting this basis for up and v into the discrete formulation, we arrive at
a set of algebraic equations

Ay =F , (13)
where
N
un(z) = uni ¢i() (14)
" ]
and
Up = [Uh1, U2, ooy Unn] T (15)

Because we are using a nodal basis, the unknowns represent the numerical so-
lution at the internal global points z;, i =1, ..., N.

We assemble the global matrix A4, by adding up all the elemental contri-
butions. The element matrix A¥ associated with the bilinear form (7) can be

expressed as
k K 1 -1 U -1 1
Ah:m(—-l 1)*‘2‘(-—1 1>' (16)



Here, h* is the length of element TF, k = 1,.... K.
The (local) grid Peclet number is defined as
U h*

Py = Pef = — (17)

Note that the grid Peclet must be thought of as a locally defined quantity for
a nonuniform grid. We know that, on a uniform grid, the numerical solution
can exhibit oscillations when the grid Peclet number is greater than 2. In
order to avoid having to resolve a thin boundary layer, but still being able
to resolve the outer solution, it is common to use upwinding. In the finite
element context, this is achieved by adding a controlled amount of diffusion in
the streamwise direction. In particular, in IR', instead of using the physical
thermal conductivity k, we use the modified conductivity

hk
on each element. This corresponds to a modified diffusivity
k
E=¢e+ %— . , (19)

The boundary layer thickness will thus be € instead of €. For a fixed discretiza-

tion, the numerical solution will have a boundary layer of no less than '—‘;— even
if € — 0. In this case, the numerical error will be O(1) in the vicinity of the
boundary layer. On the other hand, we obtain a stable solution. If f varies
slowly, the outer solution will typically be well resolved.

1.4 Theoretical analysis

We will now try to predict the oscillations that can occur when we use linear
finite elements with no upwinding.

First, from (6) and (10), and using the fact that X} is a subspace of X, we
obtain the consistency property

alu — up,v) =0 Vo e Xy . (20)

Next, we derive that, for all v € X,
1
a(v,v) = / (kvgve + Uwgv)de
0

1 11d
= K/o vx—i—U/O 2dm(v)da:

= w1l + 5 (%) - 20)

= & lvln



Through this last result, we have shown that the bilinear form a is coercive also
in the non-symmetric case. It immediately follows that

a(t — Up, U —Up) =K | u-—up ﬁﬁ . (21)

In the following, we will focus on the error in the semi-norm. We recall that,
due to the Dirichlet boundary conditions, the semi-norm and the H;-norm are
equivalent in our case.

We now rewrite the bilinear form by using integration by parts on the con-
vection term, as well as the homogeneous boundary conditions, to arrive at

1
a(w,v) = / (K weve + Uwgv)de (22)
0
1
= / (kwguy — Uwvg)de . (23)
0
We can the write
alu—up,u—up) = au—upu—uvy) Yo, € Xy,

i

1
/o (k(u—un)e(u—vn)s — U(u—un)(u—vp)z) de

klu—unlgplu—uvn g +U JJu—up |2l v — o |m

IAIA

kKlu—uplmplu—uvn g +UCh |u—up|g|u— v |m
(k+UCHh) |u—up|m|u—vn|m

i

Here, the first equality follows from the consistency property (20), the first in-
equality follows from the Schwarz inequality, while the second inequality follows
from bounding the L2-error by the error in the semi-norm, that is,

Hu~uhI{Lz§ C’hlu-—uh}H1 (24)

where C is a constant independent of A.
Combining this last result with (21), we obtain that

Klu—up 3 = alu—unu—up) (25)
(6 + CUR) |u—uplmlu—ovn g . (26)

IN

Hence, we finally arrive at the result

CUR
Ju—up g < (1+—;——) lu—vp gy Yor € Xp . (27

We can also write this in terms of the grid Peclet number as

lu—up g < (1+CPF,) inf |u—ovp|g . (28)
v €Xp



From this last result, we see that the numerical solution uy, (or the gradient of the
solution) may degrade compared to the best approximation result if C P, > 1.
If the constant C is O(1), up may become non-optimal for P, > 1. This is,
indeed, what we observe. By adding numerical diffusion, the Galerkin procedure
will again give close to “optimal” results, but to a modified problem.

Recall that, when U = 0 (i.e., in the pure diffusion case), the error estimate
reads

[u—uplgr = inf Ju—wvylg . (29)
h

i
vREX,

Exercise 1. Find the analytical solution for the problem (1)-(3) in the case of
no convection (i.e., U = 0) and when f = 1. Plot the solution.

Exercise 2. Find the analytical solution for the problem (1)-(3) when U = 1
and f = 1. Plot the solution for different values of the Peclet number.



