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by Kjetil André Johannessen and Trond Kvamsdal
TMA4220 - Numerical solution of partial differential equations using the finite element method

5: Do real-life experimentation using your FEM code

In the second part of the problem set you are going to make use of your finite element library
which you have now built. We are going to apply this to one of several real-life applications. The
three first tasks introduce the main equations you can choose from

• ∂2u
∂t2

= α∇2u - the heat equation

• ∇σ(u) = −f - the linear elasticity equation

• ρ∂2u
∂t2

= ∇σ(u) - the free vibration equation

and include some very rough ”getting-started” theory on these. After this, it follows other appli-
cations of the same equations, but ultimately you are free to choose and solve whatever problem
you want at this stage.



5.1: Making a princess cake (bake)

In this task you will take a deeper look into how to make a princess cake. The general idea is to
bake the skirt in cake dough, turn this upside down, decorate the skirt and put a doll into the center
such that it looks like she is wearing the skirt. You will be asked to model the cake dough during
cooking and predict the temperature distribution in this.

Figure 1: The target princess cake

(a) The physical cake mold form (b) The computational finite element mesh

Figure 2: The geometry which you are going to solve the heat equation on



a) The heat equation

The heat equation reads

∂u

∂t
= α∇2u

u(t, x, y, z)|∂Ω = uD (1)

u(t, x, y, z)|t=0 = u0(x, y, z)

where α is an positive constant defined by

α =
κ

cpρ

with κ∗∗ being the thermal conductivity, ρ∗∗ the mass density and c∗∗p the specific heat capacity of
the material.

We are going to semidiscretize the system by projecting the spatial variables to a finite element
subspace Xh. Multiply (1) by a test function v and integrate over the domain Ω to get∫∫∫

Ω

∂u

∂t
v dV = −

∫∫∫
Ω

α∇u∇v dV

Note that we have only semidiscretized the system, and as such our unknown u is given as a linear
combination of the spatial basis functions, and continuous in time, i.e.

uh(x, y, z, t) =
n∑
i=1

uih(t)ϕi(x, y, z).

The variational form of the problem then reads: Find uh ∈ XD
h such that∫∫∫

Ω

∂u
∂t v dV = −

∫∫∫
Ω

α∇u∇v dV, ∀v ∈ Xh

⇒
∑
i

∫∫∫
Ω

ϕiϕjdV
∂uih
∂t = −

∑
i

∫∫∫
Ω

α∇ϕi∇ϕjdV uih ∀j

which in turn can be written as the linear system

M
∂u

∂t
(t) = −Au(t) (2)

which is an ordinary differential equation (ODE) with the matrices defined as

A = [Aij ] =

∫∫∫
Ω

α∇ϕi∇ϕj dV

M = [Mij ] =

∫∫∫
Ω

ϕiϕj dV.

Construct the matrixA andM as defined above.



b) Time integration

The system (2) is an ODE, which should be familiar from previous courses. Very briefly an ODE
is an equation on the form

∂y

∂t
= f(t, y)

where y may be a vector. The simplest ODE solver available is Eulers method

yn+1 = yn + hf(tn, yn).

More sophisticated include the improved eulers methods

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn + hf(tn, yn)))

or the implicit trapezoid rule

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1))

and the famous Runge Kutta methods.

Choose an ODE scheme (based on your previous experience and expertize) and implement your
time integration. Why did you choose the solver you did?

c) Experimentation

The boundary conditions are the physical variables which we have control over. The initial condi-
tion u(t, x, y, z)|t=0 is the cake dough as it is prior to any cooking. A proper choice here would be
room temperature, say 20◦C.

During the cooking in the oven, you may apply different boundary conditions as you see fit. One
option would be non-homogeneous Dirichlet boundary conditions of, say 225◦C. This would cor-
respond to the oven temperature. Another option is to enforce a heat flux into your domain which
would be formulated as Neumann boundary conditions.

One of the key goals in this task is to see the effect that the center metallic rod has on the solution.
It’s purpose is to make sure that the cake is more or less evenly cooked at the end, so you don’t
have any raw dough in the middle of your domain after taking it out of the oven; see figure 3.

For a computational realization of the internal rod, you should apply different material properties
to all elements within this domain. In the geometry files which are available for downloading from
the course webpage, all elements in the rod have been tagged with 1001, while all dough elements
are tagged with 1000.

(**) Physical proprties of cake dough and aluminium

Sorry, but you’ll have to figure out this by yourself.



Figure 3: Raw cake dough in the middle. And yes, I actually made this cake.



5.2 Structural analysis (break)

We are in this problem going to consider the linear elasticity equation. The equations describe
deformation and motion in a continuum. While the entire theory of continuum mechanics is an
entire course by itself, it will here be sufficient to only study a small part of this: the linear elasticity.
This is governed by three main variables u, ε and σ (see table 1). We will herein describe all
equations and theory in terms of two spatial variables (x, y), but the extension into 3D space
should be straightforward.

u =

[
ux
uy

]
-

the displacement vector measures
how much each spatial point has moved
in (x, y)-direction

ε =

[
εxx εxy
εxy εyy

]
-

the strain tensor measures how
much each spatial point has deformed
or stretched

σ =

[
σxx σxy
σxy σyy

]
-

the stress tensor measures how
much forces per area are acting on a
particular spatial point

Table 1: Linear elasticity variables in two dimensions

Note that the subscript denotes vector component and not derivative, i.e. ux 6= ∂u
∂x .

These three variables can be expressed in terms of each other in the following way:

u = u(x) (3)

ε = ε(u) (4)

σ = σ(ε) (5)

The primary unknown u (the displacement) is the one we are going to find in our finite element
implementation. From (3) we will have two displacement values for each finite element ”node”,
one in each of the spatial directions.

The relation (4) is a purely geometric one. Consider an infinitesimal small square of size dx and
dy, and its deformed geometry as depicted in figure 4. The strain is defined as the stretching of
the element, i.e. εxx = length(ab)−length(AB)

length(AB) . The complete derivations of these quantities is
described well in the Wikipedia article on strain, and the result is the following relations

εxx(u) =
∂ux
∂x

εyy(u) =
∂uy
∂y

(6)

εxy(u) =
∂ux
∂y

+
∂uy
∂x

.

Note that these relations are the linearized quantities, which will only be true for small deforma-
tions.

http://en.wikipedia.org/wiki/Deformation_(mechanics)#Normal_strain


Figure 4: An infinitesimal small deformed rectangle

For the final relation, which connects the deformation to the forces acting upon it, we turn to
the material properties. Again, there is a rich literature on the subject, and different relations or
physical laws to describe different materials. In our case, we will study small deformations on
solid materials like metal, wood or concrete. It is observed that such materials behave elastically
when under stress of a certain limit, i.e. a deformed geometry will return to its initial state if all
external forces are removed. Experiment has shown that the Generalized Hooks Law is proving
remarkable accurate under such conditions. It states the following. Consider a body being dragged
to each side by some stress σxx as depicted in figure 5. Hooks law states that the forces on a
spring is linearly dependant on the amount of stretching multiplied by some stiffness constant, i.e.
σxx = Eεxx. The constant E is called Young’s modulus. Generalizing upon this law, we see that
materials typically contract in the y-direction, while being dragged in the x-direction. The ratio of
compression vs expansion is called Poisson’s ratio ν and is expressed as εyy = −νεxx. This gives
the following relations

εxx =
1

E
σxx

εyy = − ν
E
σxx

Due to symmetry conditions, we clearly see that when applying a stress σyy in addition to σxx we
get

εxx =
1

E
σxx −

ν

E
σyy

εyy =
1

E
σyy −

ν

E
σxx

Finally, it can be shown (but we will not) that the relation between the shear strain and shear stress



Figure 5: Deformed geometry under axial stresses

is εxy = 21+ν
E σxy. Collecting the components of ε andσ in a vector, gives us the compact notation

ε̄ = C−1σ̄ εxx
εyy
εxy

 =

 1
E − ν

E 0
− ν
E

1
E 0

0 0 21+ν
E

 σxx
σyy
σxy


or conversely

σ̄ = Cε̄ (7) σxx
σyy
σxy

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 εxx
εyy
εxy


For a body at static equilibrium, we have the governing equations

∇σ(u) = −f (8)[
∂

∂x
,
∂

∂y

] [
σxx σxy
σxy σyy

]
= − [fx, fy]

and some appropriate boundary conditions

u = g, on ∂ΩD (9)

σ · n̂ = h, on ∂ΩN (10)



a) Weak form

Show that (8) can be written as the scalar equation

2∑
i=1

2∑
j=i

∫
Ω
εij(v)σij(u) dA =

2∑
i=1

∫
Ω
vifi dA+

2∑
i=1

2∑
j=1

∫
∂Ω
viσijn̂ dS

(where we have exchanged the subscripts (x, y) with (1, 2)) by multiplying with a test function

v =

[
v1(x, y)
v2(x, y)

]
and integrating over the domain Ω Moreover, show that this can be written in

compact vector form as∫
Ω
ε̄(v)TCε̄(u) dA =

∫
Ω
vTf dA+

∫
∂Ω
vTσn̂ dS

=

∫
Ω
vTf dA+

∫
∂Ω
vTh dS

b) Galerkin projection

As in 2b) let v be a test function in the space Xh of piecewise linear functions on some triangula-
tion T . Note that unlike before, we now have vector test functions. This means that for each node
î, we will have two test functions

ϕî,1(x) =

[
ϕî(x)

0

]
ϕî,2(x) =

[
0

ϕî(x)

]
Let these functions be numbered by a single running index i = 2̂i+d, where i is the node number
in the triangulation and d is the vector component of the function.

Show that by inserting v = ϕj and u =
∑

iϕiui into (11) you get the system of linear equations

Au = b

where

A = [Aij ] =

∫
Ω
ε̄(ϕi)

TCε̄(ϕj), dA

b = [bi] =

∫
Ω
ϕTi f dA+

∫
∂Ω
ϕTi h dS

(Hint: ε̄(·) is a linear operator)

c) Test case

Show that

u =

[
(x2 − 1)(y2 − 1)
(x2 − 1)(y2 − 1)

]



is a solution to the problem

∇σ(u) = −f in Ω (11)

u = 0 on ∂Ω

where

fx =
E

1− ν2

(
−2y2 − x2 + νx2 − 2νxy − 2xy + 3− ν

)
fy =

E

1− ν2

(
−2x2 − y2 + νy2 − 2νxy − 2xy + 3− ν

)
and Ω = {(x, y) : max(|x|, |y|) ≤ 1} is the refereance square (−1, 1)2.

d) Implementation

Modify your Poisson solver to solve the problem (11). Verify that you are getting the correct
result by comparing with the exact solution. The mesh may be obtained through the Grid function
getPlate( ).

e) Extension into 3d

Modify your 3d Poisson solver to assemble the stiffness matrix from linear elasticity in three
dimensions.

f) Experimentation

Import a 3d mesh from Minecraft or create one using your choice of meshgenerator. Apply gravity
loads as the bodyforces acting on your domain, this will be the right hand side function f in (8).
In order to get a non-singular stiffness matrix you will need to pose some Dirichlet boundary con-
ditions. Typically you should introduce zero displacements (homogeneous Dirichlet conditions)
where your structure is attached to the ground. This would yield a stationary solution.

g) Stress analysis

Solving (8) with a finite element method gives you the primary unknown: the displacement u. If
you are interested in derived quantities such as the stresses, these can be calculated from (7). Note
that σ is in essence the derivative of u which means that since u is C0 across element boundaries,
then σ will be discontinuous. To get stresses at the nodal values, we propose to average the stresses
over all neighbouring elements.

Loop over all elements and evaluate (the constant) stresses on that element. For each node, assign
the stresses to be the average stress over all neighbouring elements. This method is called ”Stress
Recovery”.



Figure 6: Block-structured mesh from the computer game Minecraft



5.3 Vibration analysis (shake)

Do problem 5.2a) - 5.2d) and read the theory on linear elasticity.

Figure 7: Mass-spring-model

The forces acting on a point mass m by a spring is given by the well known Hooks law:

mẍ = −kx

This can be extended to multiple springs and multiple bodies as in figure 8

Figure 8: 2 degree-of-freedom mass spring model

The physical laws will now become a system of equations instead of the scalar one above. The
forces acting on m1 is the spring k1 dragging in negative direction and k2 dragging in the positive
direction.

m1ẍ1 = −k1x1 + k2(x2 − x1)

This is symmetric, and we have an analogue expression for m2. The system can be written in
matrix form as [

m1 0
0 m2

] ¨[
x1

x2

]
=

[
−k1 − k2 k2

k2 −k2 − k3

] [
x1

x2

]
M ẍ = Ax



When doing continuum mechanics, it is the exact same idea, but the actual equations differ some.
Instead of discrete equations, we have continuous functions in space and the governing equations
are

ρü = ∇σ(u)

semi-discretization yields the following system of equations

M ü = −Au (12)

with the usual stiffness and mass matrix

A = [Aij ] =

∫∫∫
Ω

ε̄(ϕi)
TCε̄(ϕj) dV

M = [Mij ] =

∫∫∫
Ω

ρϕTi ϕj dV.

e)

Build the 3d mass matrix as given above.

We are now going to search for solutions of the type:

u = ueωit (13)

which inserted into (12) yields
ω2Mu = Au (14)

f)

Equation (14) is called a generalized eigenvalue problem (the traditional being with M = I). Find
the 20 first eigenvalues ωi and eigenvectors ui corresponding to this problem.

g)

Let x0 be your initial geometric description (the nodal values). Plot an animation of the eigen-
modes by

x = x0 + αui sin(t)

You may want to scale the vibration amplitude by some visually pleasing scalar α, and choose
the time steps appropriately. Note that for visualization purposes, you will not use the eigenfre-
quency ωi since you are interested in viewing (say) 1-5 complete periods of the vibration, but for
engineering purposes this is a very important quantity.

h)

Recreate the experiment as presented in the youtube video from figure 10

In its simplest form, one should be able to construct this setup using a bluetooth speaker, your
smartphone and a sound-wave app. Note however that the frequencies will depend on the material
you choose. Does the thickness of the plate make any difference? Does the choice of material
influence the patterns? How well were you able to recreate both the patterns and the frequencies.



Figure 9: A vibrating plate with table salt on it

Figure 10: http://youtu.be/wvJAgrUBF4

http://youtu.be/wvJAgrUBF4w


5.4 Harmonic sounds

Do problem 5.3, but swap the experimentation with the following:

Another interesting question is with regards to ”harmonic” frequencies. The 1st nonzero frequency
is often called the fundamental frequency, and the rest is called overtones. If the overtones are
multiplies of the natural frequency (i.e. fi = nf0, where n is an integer and f0 is the fundamental
frequency) the sound is said to be harmonic. This is an important part in all musical instruments.
More information can be found in the Wikipedia article on pitch.

http://en.wikipedia.org/wiki/Pitch_(music)


5.5 Cooking beef

Do problem 5.1, but swap the experimentation with the following:

We are going to cook a beef in the best possible way. By alternating the boundary conditions, we
are able to simulate either cooking this in a frying pan or in the oven. Simulate the cooking process
and find the optimal way of prepearing your meat.

(a) The physical beef geometry (b) The computational finite element mesh

Figure 11: The geometry which you are going to solve the heat equation on

The boundary conditions are the physical variables which we have control over. The initial condi-
tion u(t, x, y, z)|t=0 is the beef as it is prior to any cooking. A proper choice here would be room
temperature, say 20◦C.

The actual cooking will be a product of the dirichlet boundary conditions. Frying the beef on a
pan will result in a high (how high?) temperature on the bottom and room temperature on the other
sides of the beef. What should be done to turn the beef and fry the other side? When should we
turn it? Cooking it in an oven would result in a uniform boundary conditions on all sides of say
225◦C. How long will it have to stay in? Is it a good idea to keep it in room temperature after
cooking (and how does this change the boundary conditions)? More exotic cooking techniques
include wrapping it in plastic and putting it in a water bath (not boiling) for some time, and only
frying it on a pan for seconds prior to serving. This is called Sous-Vide.

Experiment around by cooking it in a number of ways using different boundary conditions. The
optimality criterion is left up to the student. How well is your optimal beef cooked?

(**) Physical proprties of meat

It is hard to generalize too much on the physical properties of the beef as they are dependant on
a number of variables outside the scope of this task. Not only are they dependant on the meat
composition (i.e. what primal cut it is derived from), but it is also dependant on the temperature.
Try and find good approximations for these numbers. A start may be the work of Pan and Singh
(”Physical and Thermal Properties of Ground Beef During Cooking”) which suggests that the
density ρ is in the range 1.006 to 1.033 g/cm3 and the thermal conductivity κ in the range 0.35 to
0.41 W/m·K. The specific heat capacity is not mentioned in the abstract, but may be commented
on in the actual article for those that get their hands on the entire document.

Unconfirmed sources list the specific heat capacity cp of meat as 3 973 J/kg·K. You may use these
values, or better yet: find more reliable, documented values.



5.6 What if?

What if a huge mountain - Denali, say - had the bottom inch of its base disappear? What would
happen from the impact of the mountain falling 1 inch? What about 1 foot? What if the

mountain’s base were raised to the present height of the summit, and then the whole thing were
allowed to drop to the earth?

Figure 12: Don’t stick your hand in there

Randall Munroe, the author of the webcomic XKCD, has a blog titled ”what if”. In short these are
absurd questions answered in a scientific and accurate sense. It is a goldmine of inspiration and
you might find interesting questions or cases to study from this blog. A link to series is included
below

Figure 13: http://what-if.xkcd.com/57/

http://what-if.xkcd.com/57/


5.7 Custom game

a) Equation

Choose any equation of the above, or perhaps your own (preferably linear) equation and discretize
this in a finite element framework. Add appropriate boundary conditions.

b) Geometry

Create a custom geometry using the matlab function delauney, the free software gmsh or any
other method you would like.

c) Solve problem

Assemble all matrices, and solve all system of equations.

d) Conclusions

Plot the results in GLview, Paraview or Matlab. Experiment around with different boundary con-
ditions, geometry or material parameters to do an investigation of your choice.

http://geuz.org/gmsh/
http://ceetron.com/products/end-user-products/glview-inova
http://www.paraview.org/

