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16 ANALYSIS OF STRESS [CHAP. 2
2.48 Sketch the Mohr's circles and determine the maximum shear stress for each of the following
stress states: i - o o
(@ oy = s v 0 by o5 = 0o —r O
o 0 © 0 0 —2r
Ans. (@) os=17, (B) 05= 3r/2
i 1 £7),
249, Use the result given in Problem 1.58, page 39, rwn@n_._mn with the stress transformation law (2 )
page 50, to show that ejrepqmOinTiqTkm is an invariant.
250. In a continuum, the stress field is given by the tensor

2z, 1-a3)z O
o = |A-sp)n @-3=3 0
0 0 2x3

Determine (a) the body force distribution if the equilibrium equations are to E.., mw:mnﬂm n_..—.”wu”o””
the field, (b) the principal stress values at the point P(a, o.nz\m ), (¢) the maximum shear s

P, (d) the principal deviator stresses at P.
Ans. (a) by = —4z,, (b) 2,— ¢, 8a, (c) 4.5a, (d) —11a/8, —ba/3,16a/3

Chapter 3

Deformation and Strain

3.1 PARTICLES AND POINTS

In the kinematics of continua, the meaning of the word “point” must be clearly under-
stood since it may be construed to refer either to a “point” in space, or to a “point” of a
continnum. To avoid misunderstanding, the term “point” will be used exclusively to
designate a location in fixed space. The word “particle” will denote a small volumetric
element, or “material point”, of a continuum. In brief, a point is a place in space, a particle
is a small part of a material continuum.

3.2 CONTINUUM CONFIGURATION. DEFORMATION AND FLOW CONCEPTS

At any instant of time ¢, a continuum having a volume V and bounding surface S will
oceupy a certain region R of physical space. The identification of the particles of the
continuum with the points of the space it occupies at time ¢ by reference to a suitable set of
coordinate axes is said to specify the configuration of the continuum at that instant.

The term deformation refers to a change in the shape of the continuum between some
initial (undeformed) configuration and a subsequent (deformed) configuration. The emphasis
in deformation studies is on the initial and final configurations. No attention is given to
intermediate configurations or to the particular sequence of configurations by which the
deformation occurs. By contrast, the word flow is used to designate the continuing state
of motion of a continuum. Indeed, a configuration history is inherent in flow investigations
for which the specification of a time-dependent velocity field is given.

3.3 POSITION VECTOR. DISPLACEMENT VECTOR

In Fig. 8-1 the undeformed configuration of a material continuum at time t=0 is
shown together with the deformed configuration of the same continuum at a later time
t =t. For the present development it is useful to refer the initial and final configurations
to separate coordinate axes as in the figure.

Fig.3-1

Kii
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Accordingly, in the initial configuration a representative particle of the continuum
occupies a point Po in space and has the position vector

X = N—W—.TNNW».*. N.amu = N:ma (8.1)

with respect to the rectangular Cartesian axes QN.N«N«.. Upper-case Enﬁ%nm m”.o. :Mﬁh MM
indices in (3.1) and will appear as such in several equations .?wn follow, vﬂo : eir o &2
summation indices is restricted to this section. In the ntwwuaon of z-m. r uppe: e
subscripts or superscripts serve as labels only. Their use s..wnm isto oEE_mM_Nm tl o.«o““mnee?
of certain expressions with the coordinates ANL.?NUV. .&:&- are nw:.ma M ME M.%m o
dinates. In the deformed configuration the particle originally at Po is located a poi

P and has the position vector

x = 2@ + Tohr + 2 = T (3-2)

when referred to the rectangular Cartesian axes 0%i1Z2Zs. .mmno .FSoﬂ.owmm letters w.ﬂ :mwm.
as subscripts to identify with the coordinates (xiz2%s) .sr.n: give the current position
the particle and are frequently called the spatial coordinates.

The relative orientation of the material axes OX1X:X; and the spatial axes 0Z:r:Ts is
specified through direction cosines a,, and ag,, which are defined by the dot products of
unit vectors as " mx.m., T 2
No summation is implied by the indices in Mﬁowm MMMM&M&M—“ _MMMM«W :umnzm-, aw.mmwau.w hm_.mnw_hﬁ”
wﬂwm“m” hﬁmﬂ:w“”nﬁ“ﬁ“ﬁwx%ﬂ”ﬂ»MMEHM«M%SE M:E material axes take the form

(8.4)

[ 8,03 @xpmp = prpM Bym

In Fig. 3-1 the vector u joining the points Po and P (the initial wn.a ».Ewm uommmoﬂ”
respectively, of the particle), is known as the displacement vector. This vector may

expressed as I 5)

i 3.6
or alternatively as U= U.l, (3.6)

in which the components Ux and ux are interrelated through the direction nmw?mm @
From (1.89) the unit vector %, is expressed in terms of the material base vectors Ix as

8 = audy (8.7)
Therefore substituting (8.7) into (3.5), .
u = wfady) = Ugdy = U 8.8)
3.9
from which Up = il (3.9)

Since the direction cosines a,, are constants, the components of the &mu_wnma.-m:a vector MMM
observed from (3.9) to obey the law of transformation of first-order Cartesian tensors,

they should.

The vector b in Fig. 3-1 serves to locate the origin o with respect to 0. From the

geometry of the figure, v bix—X (8.10)
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Very often in continuum mechanics it is possible to consider the coordinate systems
O0X,1X:X: and ox,x2xs superimposed, with b =40, so that (3.10) becomes

u=x-X (8.11)
In Cartesian component form this equation is given by the general expression

U = T, — e, X, (3.12)

However, for superimposed axes the unit triads of base vectors for the two systems are

identical, which results in the direction cosine symbols «;, becoming Kronecker deltas.
Accordingly, (3.12) reduces to

u, = 1, — X, (3.19)

in which only lower-case subscripts appear. In the remainder of this book, unless specifi-

cally stated otherwise, the material and spatial axes are assumed superimposed and hence
only lower-case indices will be used.

34 LAGRANGIAN AND EULERIAN DESCRIPTIONS

When a continuum undergoes deformation (or flow), the particles of the continuum

move along various paths in space. This motion may be expressed by equations of the
form

o = 2(X1, X0 Xot) = 2(X,1) or x = x(X,1) (8.14)

which give the present location a: of the particle that occupied the point (X:XXs) at time
t=0. Also, (3.14) may be interpreted as a mapping of the initial configuration into the
current configuration. It is assumed that such a mapping is one-to-one and continuous,
with continuous partial derivatives to whatever order is required. The description of
motion or deformation expressed by (3.14) is known as the Lagrangian formulation.

If, on the other hand, the motion or deformation is given through equations of the form
Xi = Xz, 22, 23, 8) = NAN. ) or X = X(x,t) (3.15)

in which the independent variables are the coordinates z; and ¢, the description is known
as the Eulerian formulation. This description may be viewed as one which provides a
tracing to its original position of the particle that now occupies the location (xi, z2, ). If
(8.15) is a continuous one-to-one mapping with continuocus partial derivatives, as was also
assumed for (3.14), the two mappings are the unique inverses of one another. A necessary
and sufficient condition for the inverse functions to exist is that the Jacobian

7 A _mm_ (3.16)
should not vanish.
As a simple example, the Lagrangian description given by the equations
= X1+ Xo(et—1)
z: = Xu(e7t—-1) + X, (3.17)
T3 = X3
has the inverse Eulerian formulation,
X, =tz
X: = |:I||§Mn|.M.wv =" (8.18)
Xs = @
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35 UHWONE.EO.Z.GW%uHde.. DISPLACEMENT GRADIENTS i 3.6 DEFORMATION TENSORS. FINITE STRAIN TENSORS
e rasint. T symbolc e o, i seproenied by S mtehea 1 o parione s A CRrtaa Enbedliss axse OXLX.X s ity
N % . 3 ; 1 0T 122,
e asm St T it o S g
d Xa, 23

in which the differential operator Vx = Mulmﬂmﬁ is applied from the right (as shown

explicitly in the equation). The matrix form of F serves to further clarify this property
of the operator Vx when it appears as the consequent of a dyad. Thus

£ 3 P 5 ax1/9X1 az1/0X2 3z1/0Xs
Fo= |z Tﬂum && = | oxdfoXs owefoXs omfoXs| = [om/aX)] (3:20)
T3 3xa/0X1 8xa/aX: 3xa/0Xs

Partial differentiation of (3.15) with respect to z; produces the tensor aX/az; which is

called the spatial deformation gradient. This tensor is represented by the dyadic X, %5
- _oax, |, X, | Xy %z
H = XVy = @& + 3% + e (3.21) 1%
having a matrix form Fig. 3-2
X, 2 o 47 aXfom  aXiaze X[z The square of the differential element of length between Py and Qo is
i i= il vmmmmlL . mw“\\ma_ .ww%u“ .w.wm\\mau = [aXJoz)] (329) (@X)? = dX-dX = dX.dX, = 8ydX.dX, o
Xa aXofom  0Xaldzs 0Xs/0% From (3.15), the distance differential dX; is seen to be
The material and spatial deformation tensors are interrelated through the well-kmown dX, = (2.9 d
chain rule for partial differentiation, ¢ T g, 0 O dX = H-dx (3-29)
maX, _ Xidm _ (3.29) so that the squared length (dX)? in (3.28) may be written
. aXjem 9w 0Kk * (dxy X aXi
4 = 22k R deidyy = Cydmid 2 = dx:C-
Partial differentiation of the displacement vector % with respect to the coordinates 9z oy ydzmdzy or (dX) = dx-C-dx (3.90)
produces either the material displacement gradient ou,/aX;, or the spatial displacement in which the second-order tensor
gradient dui/az;. From (8.18), which expresses #; as a difference of coordinates, these tensors aX, 0X,
are given in terms of the deformation gradients as the material gradient Cy = mluxmmlﬁm or € = H.-H (3.31)
__ : ! mm i mmm _s, or J=uvx=EF-l (8.24) is known as Cauchy’s deformation tensor.
! In the deformed configuration, the square of the di i
and the spatial gradient Pand Qis q e differential element of length between
2 — . - —
S _ g, _ o K=uy,=1-H (8.25) (da)f = dxdx = dmdz = bydmdzy (8.52)
3x; azx; x From (3.14) the distance differential here is
In the usual manner, the matrix forms of J and K are respectively daf= %WW dX, or dx = F-dX piress
™ s ) ) JufoX: ou/aXe du/aXa g0 that the squared length (d % i
g = |m Tﬂmﬁy = | oudoX: owfoX: owloXs| = [ow/OX)] (8.26) . mm , (da}? 1n(3.52) may be wrilten
_ 0Tk 0T
o= us oul/dXy duafaX: Bua/oXs (dz)? = mﬁﬂmﬁnﬁb = GydXidX, or (dz)? = dX-G-dX (8.94)
in which the s
wm 3 ) ) quyfaxy  dur/9x2 dur/dxa e second-grdgr teisor
K = |u m.ﬂ_,mww.:wm_”_ = | uafom OU2fdT2 Suo/Ox3 | = [Buif azs) (3.27) Gy = WW_M.W or 6 = F.°F (3.95)
a uafoT1 OUs/dT2  Bus/dT3 .

is known as Green’s deformation tensor.
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i } i i rticles of a continuum is used as
The difference (dz)*—(dX)? for two :a_mrvodw.m pa 1
the measure of deformation that occurs in the =m_mrvo~.voo.a of the particles wmmémma Fm
initial and final configurations. If this difference is identically zero for all :n.eroEwm
particles of a continuum, a rigid displacement is said to occur. Using (3.34) and (3.28),
this difference may be expressed in the form

ARanll ARN.vn = A@@h‘ a:v dX:dX; = Nh:&ubmx‘

aXi 0X;
or (dz)* — (dX)* = dX-(F.-F— 1)-dX = dX-2lc-dX (3.36)
in which the second-order tensor
= 1(02e 0%k _g, Lo = HF-F—1) (8.87)
Ly = mAm.&. X, acv or 3

is called the Lagrangian (or Green’s) finite strain tensor.

Using (9.92) and (3.80), the same difference may be expressed in the form

Xy a X _
(dz)* — dX)* = Agl.mﬂwmlsv dzidz) = 2Eydzide;
or (dz) — @X)? = dx-(1—Hc-H)-dx = dx-2Es-dx (3.38)

in which the second-order tensor

H muﬂxmm m
Ey = MAm:Iﬂuﬂmaav or A

is called the Eulerian (or Almansi’s) finite strain tensor.

1(1 — He* H) (3.39)

An especially useful form of the Lagrangian and Eulerian ».Ewam.mqwi 3=mo~”m wmn _www.mw
in which these tensors appear as functions of the &mu_unmam.:» gradients. . Thus .H oe m“
from (3.24) is substituted into (3.87), the result after some simple algebraic manipu
is the Lagrangian finite strain tensor in the form

1 fowm , dw Ew:l,v or Lo = 3+ +) (8.40)
Ly % MA@N +ax, taxiox,

In the same manner, if aXy/dz) from (3.25) is substituted into (8.89), the result is the
Eulerian finite strain tensor in the form

Ey = WA@;TE‘EEV or Es = .WA—A.*._AnI.—An.—O Ah.th

T 2\9z; o0z 0% Ay

The matrix representations of (3.40) and (8.4} may be written directly from (3.26) and
(3.27) respectively.

3.7 SMALL DEFORMATION THEORY. INFINITESIMAL STRAIN TENSORS

The so-called small deformation theory of continuum anrm_—_iam has ww wwm ”wﬂm now_..,ﬂ__m
i i dients be small compare .
tion the requirement that the displacement .mnw )i
m_“v:mwamim_ measure of deformation is the difference ann M QAV&DNW SM«.MMVENWM%MMMWM%MMM
i i i inserting (3. an 2 K 1
in terms of the displacement gradients by inse - :
i i i 11, the finite strain tensors In
3.98) respectively. If the displacement gradients are small, f A
Ma..mo.w m:%@.«mv reduce to infinitesimal strain tensors, and the resulting equations represent

small deformations.
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In (3.40), if the displacement gradient components dwu/8X; are each small compared to

unity, the product terms are negligible and may be dropped. The resulting tensor is the
Lagrangian infinitesimal strain tensor, which is denoted by

1 /3w ou
W = molx_ + %V or L= uVy+ Veu) = I+ (8-42)

Likewise for du/az; < 1 in (8.41), the product terms may be dropped to yield the Eulerian
infinitestmal strain tensor, which is denoted by

1= w&ln wlwv or  E=uv, +V,u) = §(K+K) (3.43)
If both the displacement gradients and the displacements themselves are small, there is
very little difference in the material and spatial coordinates of a continuum particle.
Accordingly the material gradient components 3u./0X; and spatial gradient components
dui/dx; are very nearly equal, so that the Eulerian and Lagrangian infinitesimal strain
tensors may be taken as equal. Thus

ly=¢ or L=E (3-44)
if both the displacements and displacement gradients are sufficiently small.

3.8 RELATIVE DISPLACEMENTS. LINEAR ROTATION TENSOR.
ROTATION VECTOR

In Fig. 3-3 the displacements of two neighboring
particles are represented by the vectors u{*® and u{%’
(see also Fig. 3-2). The vector

duy = u{% — 4™  or du = u'®W — yP

(8.45)
is called the relative displacement vector of the particle
originally at Qo with respect to the particle originally
at Po. Assuming suitable continuity conditions on the
displacement field, a Taylor series expansion for u(™®
may be developed in the neighborhood of P,. Neglect-
ing higher-order terms in this expansion, the relative
displacement vector can be written as

Fig.3-3

dw = (w/aX)rydX; or du = (uVy)e,- dX (3.46)

Here the parentheses on the partial derivatives are to emphasize the requirement that the
derivatives are to be evaluated at point P,. These derivatives are actually the components

of the material displacement gradient. Equation (3.46) is the Lagrangian form of the
relative displacement vector.

It is also useful to define the unit relative displacement vector du/dX in which dX is
the magnitude of the differential distance vector dX;. Accordingly if v, is a unit vector in
the direction of dX, so that dX, = v dX, then

dui du dX; ui du

X T X, dX "~ i Of gx T uVxv = I (847

Since the material displacement gradient du./8X; may be decomposed uniquely into a
symmetric and an antisymmetric part, the relative displacement vector du; may be written as
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| 1 [ auy 1/om _ ows\l gx (dz)* — (dX)* = (dz—dX)(dz +dX) = 2l,dXidX,
&Suﬁmﬂm+wﬂ+mmwmm1ub ! 2 2
or (dz)? — (@dX)? = (dv—dX)(dz +dX) = dX-2L-dX (3.58)
or du = [Huvy + Vxu) + H(uv, — Vg u)] - dX (3.48) Since dx ~ dX for small deformations, this equation may be put into the form
The first term in the square brackets in (8.48) is recognized as the linear Lagrangian strain dz—dX _ , dXidX, dz—dX _ .., .
tensor ;. 'The second term is known as the linear Lagrangian rotation tensor and is ax  _ wdX dx - W oF ax - L (8.59)
dhee o by The left-hand side of (3.59) i i
1w ou X 5 9.49 - side of (3.59) is recognized as the
Wy = 3 wHImNV or W HuVy Vx4 (8-49) change in length per unit original length of the
L ) ; i of point differential element and is called the normal strain
In a displacement for which the strain nm.=mo~. @ is Emﬂumﬁ:ﬂ zero in a..m. Sﬂ“@ 0 gﬂw & for the line element originally having direction
P, the relative displacement at that point will be an infinitesimal rigid y rotation. cosines dXi/dX.

is infinitesi tation may be represented by the rotation vector . .
ol : ; When (8.59) is applied to the differential line

w, = 4eu,W,, oOF W= 1V Xu (8.50) element P;Qo, located with respect to the set of
local axes at P, as shown in Fig. 34, the result will

b . . ; ig i gsion
in terms of which the relative displacement is given by the expre be the normal strain for that element. Because

du, = €W, dX, or du = wxdX (3.51) Py@Qy here lies along the X axis,
The development of the Lagrangian description of the relative displacement vector, the dX\/dX = dXs/dX = 0, dX,/dX =1
linear rotation tensor and the linear rotation vector is paralleled completely by an analogous and therefore (3.59) becomes .
development for the Eulerian counterparts of these quantities. Accordingly the Eulerian gz — dX s i)
_ description of the relative displacement vector is given by T b I = X, (3.60) Fig. 3-4
dw = w dx, or du = K-dx (8.52) Thus the :oﬂ.:»_ strain for an element originally along the X. axis is seen to be the com-
i ponent L. .ﬁ.xmimmm for elements originally situated along the X, and X; axes, (3.59) yields
and the unit relative displacement vector by :oﬂj»_ strain .<w_=mm I: and Iz respectively. In general, therefore, the diagonal terms of
e _ o dny _ o . dn _ - s (2.59) the linear strain tensor represent normal strains in the coordinate directions.
W = Gpdn | am™ dz * .

Decomposition of the Eulerian displacement gradient du/oz; results in the expression

du _ [L(ow o wmﬁl@vm
|mm - ﬁw Amﬁ. 3 ma_v i 2 \dz; ax Q <
or du = [3uv, +V,uw+ Huv, — v, u)] * dx (8.54)

The first term in the square brackets of (3.54) is the Eulerian linear strain tensor ¢;. The
second term is the linear Eulerian rotation tensor and is denoted by

Lol 0t O nwl_. a.ms
Yy T2 Amﬁ- mH*v or 2 'Aﬂqn 4! v

From (8.55), the linear Eulerian rotation vector is defined by

o = W«:xe_: or e = 3V, Xu (3.56)

Fig.3-5

in terms of which the relative displacement is given by the expression

g g e daieid (8.57) . H:m. physical E.»mnunmgzob of the off-diagonal terms of l; may be obtained by a con-
" 1k Gk sideration of the line elements originally located along two of the coordinate axes. In
Fig. 3-5 the line elements PoQo and PoM, originally along the X. and X, axes, respectively,
become after deformation the line elements PQ and PM with respect to the parallel set of

3.9 INTERPRETATION OF THE LINEAR STRAIN TENSORS local axes with origin at P. The original right angle between the line elements becomes
For small deformation theory, the finite Lagrangian strain: tensor Ly in (8.36) may be the u:n._m a.. m....o:. (8.46) and the assumption of small deformation theory, a first order
replaced by the linear Lagrangian strain tensor 1, and that expression may now be written approximation gives the unit vector at P in the direction of @ as
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N UL A ~ duUs A (3.61)

A _ OWia , BUza A (9.62)
ny = Wulﬂluﬁn + mxuun + e
aLa L Swdm B O (5.6%)
Therefore cosfd = M2 By = Fxox T 5Xs  aXa

or, neglecting the product term which is of higher order,

_ dus sus
cosd = X, T axs 2k

(3.64)
Furthermore, taking the change in the right angle between $:.w &mam:ﬁmnnmn.;u = x/2—8,
and remembering that for the linear theory v,, is very small, it follows tha

Yoy ~ SiNyy = sin («/2—0) = cosd = 21, (8.65)

Therefore the off-diagonal terms of the linear strain nmsmonnnmunmwmsa nwsw.swh.m: MM_M mﬂ..mm_m
i igi i les to one another.
between two line elements originally at right ang n
M”“Mﬂw_m:nm are called shearing strains, and because of .nro_wwnnon.m in Qnmmv these tensor
components are equal to one-half the familiar “gngineering” shearing strains.

A development, essentially paralleling the one just unmmﬁ_;mm mon«wﬁﬂ-#ﬂ“ﬂﬂmwgsﬂ, MM
the linear Eulerian s e

the components of Ly, may also be made for 1 4 OF fur s

i i i ivati in the choice of line elements, whic
essential difference in the derivations rests in t 3 , e

i ipti i the coordinate axes after deformation.
Eulerian description must be those that lie along . s

i i d the off-diagonal terms the shearing
The diagonal terms of ¢, are the normal strains, and t7 7 1 T sheari
u:w?m.mm.ou those mmmowﬂwsosm in which the mmmsauﬁ_on, lyj=¢; 18 valid, no distinction
is made between the Eulerian and Lagrangian interpretations.

310 STRETCH RATIO. FINITE STRAIN INTERPRETATION

i i in of a differential line element is the
An important measure of the extensional strain o e Tisneai ot e

i io. This quan
tio dz/dX, known as the gtretch or stretch ratio - n il
Mwm_vomun P, in the undeformed configuration or at the uo_im P in the deformed ao=mmﬂnw“”w_~.
Thus from (3.34) the squared stretch at point Po for the line element along the unit v

i = dX/dX, is given by
A%V» o 2t n__wwmwlw or Ak, = f-G-@ (3.66)

q >, (m)

dX/r,
Similarly, from (3.30) the reciprocal of the squared stretch for the line element at P along
the unit vector fi = dx/dz is given by

axy _ 1 - gdmdm o #nuw.n.w Q.aa
dz)e | Ay dx dx Aoy
igi i in Fig. 34, m=¢€ and
element originally along the local X, axis shown in
ndm—MMMnM :le&N — dXs/dX =0, dX/dX =1 so that (3.66) yields for such an element

>-m~. = Goz = 1+ 2L Au.mmv

s 2 u)
Similar results may be determined for A, and A, .
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For an element parallel to the z. axis after deformation, (3.67) yields the result
1
Aa

(eg)

= 1 — 2E» (3.69)
with similar expressions for the quantities ~\>w~: and n?ﬂ..n: . In general, A, is not equal

to A, since the element originally along the X, axis will not likely lie along the z, axis
after deformation.

The stretch ratio provides a basis for interpretation of the finite strain tensors. Thus
the change of length per unit of original length is

de — dX dx
|&Mﬂ| = Ncw -1 = Ay — 1 A.w.vsv
and for the element Po@o along the X» axis (of Fig. 34), the unit extension is therefore
Loy = A3, —1=V1+2Ln-1 (8.71)

This result may also be derived directly from (3.86). For small deformation theory, (3.71)
reduces to (3.60). Also, the unit extensions L« and L) are given by analogous equations
in terms of L. and Lis respectively.

For the two differential line elements shown in Fig. 3-5, the change in angle v,y =#/2—6
is given in terms of Ag,, and A4, by
siny, = mhnﬂ = 2Las (8.72)

Agphen V1+2L2V/1+2L3s

When deformations are small, (3.72) reduces to (3.65).

3.11 STRETCH TENSORS. ROTATION TENSOR

The so-called polar decomposition of an arbitrary, nonsingular, second-order tensor is
given by the product of a positive symmetric second-order tensor with an orthogonal second-
order tensor. When such a multiplicative decomposition is applied to the deformation
gradient F, the result may be written

Fy = m = RuSky = TuRy or F=R'S=T-R (3.79)

in which R is the orthogonal rotation tensor, and S and T are positive symmetric tensors
known as the right stretch temsor and left stretch tensor respectively.

The interpretation of (3.78) is provided through the relationship dz: = (9z/8X)) aX;
given by (3.38). Inserting the inner products of (3.73) into (3.83) results in the equations

dz; = N.x.m._anwxh = Q._xx_a&»ub or dx = R*S-dX = T-R-dX Ah.v‘hv

From these expressions the deformation of dX, into dx: as illustrated in Fig. 3-2 may be
given either of two physical interpretations. In the first form of the right hand side of
(3.74), the deformation consists of a sequential stretching (by §) and rotation to be followed
by a rigid body displacement to the point P. In the second form, a rigid body translation
to P is followed by a rotation and finally the stretching (by T). The translation, of course,
does not alter the vector components relative to the axes X and z:.
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312 TRANSFORMATION PROPERTIES OF STRAIN TENSORS
The various strain tensors Ly, By, Ly and ¢ defined respectively by (3.87), Aa...ws.. Q.h.mv
and (3.48) are all second-order Cartesian tensors as indicated by the .ﬁio mnom. Sm—nmu.—:
each. Accordingly for a set of rotated axes Xi having the n;:mmo:.sm»_@ matrix [by] with
respect to the set of local unprimed axes X; at point P, as shown in Fig. 3-6(a), the com-
ponents of Li and L are given by
L} = bigbuLpe or Lo = B-la-Be (8-75)

and Ui = bisbiala or L = B-L-B: (8.76)

(b)

Fig. 3-6

Likewise, for the rotated axes z{ having the transformation matrix [a4] in Fig. 3-6(b),
the components of E); and ef) are given by

E, = a0 FE, or Er = A-Ex-Ac
E& ) = Ot or FE = A'E*A. (8.78)

(8.77)

By analogy with the stress quadric described in Section 2.9, page 50, the hn.wi:&ﬁ:
and Eulerian linear strain quadrics may be given with reference 8 ~omw_ Cartesian nooh.-
dinates n, and ; at the points P, and P nmmmvmnaﬁ_w as shown in Fig. 8-7. Thus the
equation of the Lagrangian strain quadric is given by

Loy = =h* or  mclem = =h? (8.79)

Fig.3-7
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and the equation of the Eulerian strain quadric is given by
ell, = *9* or ["E'f = xg° (8.80)
Two important properties of the Lagrangian {Eulerian} linear strain quadric are:

1. The normal strain with respect to the original {final} length of a line element is
inversely proportional to the distance squared from the origin of the quadric Po
{P} to a point on its surface.

2. The relative displacement of the neighboring particle located at Qo {Q) per unit
original {final} length is parallel to the normal of the quadric surface at the point
of intersection with the line through PeQ, {PQ}.

Additional insight into the nature of local deformations in the neighborhood of P, is
provided by defining the strain ellipsoid at that point. Thus for the undeformed continuum,
the equation of the bounding surface of an infinitesimal sphere of radius R is given in
terms of local material coordinates by (3.28) as

(dX)® = sydXidX; = R* or (dX)* = dX'1-dX = R? (3.81)
After deformation, the equation of the surface of the same material particles is given by
3.80
(3.50) as (X% = Cydmdz, = R* or (dX? = dx-C-dx = R? (3.82)

which describes an ellipsoid, known as the material strain ellipsoid. Therefore a spherical
volume of the continuum in the undeformed state is changed into an ellipsoid at Po by the
deformation. By comparison, an infinitesimal spherical volume at P in the deformed
continuum began as an ellipsoidal volume element in the undeformed state. For a sphere
of radius = at P, the equations for these surfaces in terms of local coordinates are given
by (3.92) for the sphere as

(dz)? = sydzidzy = 7@ or (dz)* = dx-l-dx = 7* (3.89)

and by (3.34) for the ellipsoid as
(dz)* = GydXidX, = or (dz)* = dX-G-dX = 1* (8.84)
The ellipsoid of (9.84) is called the spatial strain &m@.me_.&..u Such strain ellipsoids as

described here are frequently known as Cauchy strain ellip

313 PRINCIPAL STRAINS. STRAIN INVARIANTS. CUBICAL DILATATION

The Lagrangian and Eulerian linear strain tensors are symmetric second-order Cartesian
tensors, and accordingly the determination of their principal directions and principal
strain values follows the standard development presented in Section 1.19, page 20.
Physically, a principal direction of the strain tensor is one for which the orientation of an
element at a given point is not altered by a pure strain deformation. The principal strain
value is simply the unit relative displacement (normal strain) that occurs in the principal
direction.

For the Lagrangian strain tensor L;, the unit relative displacement vector is given by
(3.47), which may be written

du du

ax = WFrWyy ot gy

Calling xv the normal strain in the direction of the unit vector mi, (3.85) yields for pure
strain (W =0) the relation "

1™ = Lm or 1 = L-a (3.86)

= L+W)-3 (8.85)



90 DEFORMATION AND STRAIN [CHAP. 3

If the direction m: is a principal direction with a principal strain value [, then
I = In = Wy or 19 =18 =08 (3.87)
Equating the right-hand sides of (8.86) and (3.87) leads to the relationship
(b= 8k = 0 or Lt-m-i=0 (3.88)

which together with the condition nau= 1 on the unit vectors m unoc.ao the necessary
equations for determining the principal strain value [ and its direction cosines . Nontrivial
solutions of (8.88) exist if and only if the determinant of coefficients vanishes, Therefore

lbs—8s =0 or [|t— =0 (3.89)

which upon expansion yields the characteristic equation of L, the cubic
p-LB+II-1II, =0 (3.90)
where I, = i = try, I, = .wﬁ:?l?r.v. 1, = _r__ = detl A%.QNV

are the first, second and third Lagrangion strain invariants respectively. The roots of
(8.90) are the principal strain values denoted by lu, ko and la.

The first invariant of the Lagrangian strain tensor may be expressed in terms of the
principal strains as L= &= lo+lo+he (2.92)
and has an important physical interpretation. To see this, consider a .&nm.nm:nmﬁ rec-
tangular parallelepiped whose edges are parallel to the principal mn.u.E: Enmnm_ouu as
shown in Fig. 3-8. The change in volume per unit original volume of this element is called
the cubical dilatation and is given by

Dy = AVe _ dX(1 + L) dXs(1 + L) dXs(1 + k) — 4Xh dX:dXs (3.99)
* T V. dX, dX:dXs
For small strain theory, the first-order approximation of this ratio is the sum
Do = lp+le+ke = 1 (3.94)
x,

dXs(1 + Lg))

Xz

-\ 7 ~
X, _W. dX4(1 + L)

X
Fig.3-8
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Smnru.mnwua to the Eulerian strain tensor ¢; and its associated unit relative displacement
vector ¢{®, the principal directions and principal strain values ¢, ¢q ¢, are determined
in exactly the same way as their Lagrangian counterparts. The Eulerian strain invariants
may be expressed in terms of the principal strains as

I = ey teg teq
Ik = ¢hent o™ @i (8.95)
e = epenen

The cubical dilatation for the Eulerian description is given by
AVIV = D = ¢t et oem (3.96)

3.14 SPHERICAL AND DEVIATOR STRAIN TENSORS

The Lagrangian and Eulerian linear strain tensors may each be split into a spherical
and deviator temsor in the same manner in which the stress tensor decomposition was
carried out in Chapter 2. As before, if Lagrangian and Eulerian deviator tensor com-
ponents are denoted by di; and ey respectively, the resolution expressions are

~& = R: -+ m:q or L=1+ _Anw_.v

and w=ey+8E or E=E+ _@wm,
The deviator tensors are associated with shear deformation for which the cubical dilatation
vanishes. Therefore it is not surprising that the first invariants dy and ey of the deviator
strain tensors are identically zero.

bk

(8.97)

(8.98)

315 PLANE STRAIN. MOHR'S CIRCLES FOR STRAIN

When one and only one of the principal strains at a poeint in a continuum is zero, a
state of plane strain is said to exist at that point. In the Eulerian description (the
Lagrangian description follows exactly the same pattern), if z; is taken as the direction
of the zero principal strain, a state of plane strain parallel to the z:z: plane exists and the
linear strain tensor is given by

6 g 0 g 9 0
o = €6 0 or T:_ = € o 0 (3.99)
0o 0 O 0o 0 O

When z, and 22 are also principal directions, the strain tensor has the form

€ 0

0

0

n

0

= 0 ¢, O or T& = 0 ¢ O (8.100)
0 0 0 L O 0 0

a:

In many books on “Strength of Materials” and “Elasticity””, plane strain is referred
to as plane deformation since the deformation field is identical in all planes perpendicular
to the direction of the zero principal strain. For plane strain perpendicular to the zs axis,
the displacement vector may be taken as a function of z, and z: only. The appropriate
displacement components for this case of plane strain are designated by
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wm = SAH:HNV
U = g&a:a& Am.ueuv

3
&
It

C (a constant, usually taken as zero)

Inserting these expressions into the definition of ¢; given by (3.48) produces the plane
strain tensor in the same form shown in (3.99).

A graphical description of the state of strain at a point is provided by the Mohr's
circles for strain in & manner exactly like that presented in Chapter 2 for the Mohr’s circles
for stress. For this purpose the strain tensor is often displayed in the form

€11 vy i
g = (dre e Yru
.m..x_u .W.«F.. €33

Here the v, (with © » j) are the so-called “engineering” shear strain components, which are
twice the tensorial shear strain components.

(3.102)

The state of strain at an unloaded point on the yi2
bounding surface of a continuum body is locally D
plane strain. Frequently in experimental studies
involving strain measurements at such a surface
point, Mohr's strain circles are useful for reporting
the observed data. Usually three normal strains are
measured at the given point by means of a strain o G O
rosette, and the Mohr’s circles diagram constructed
from these. Corresponding to the plane stress
Mohr's circles, a typical case of plane strain diagram
is shown in Fig. 8-9. The principal normal strains
are labeled as such in the diagram, and the maxi-
mum shear strain values are represented by points
D and E. Fig.3-9

E

316 COMPATIBILITY EQUATIONS FOR LINEAR STRAINS
If the strain components ¢, are given explicitly as functions of the coordinates, the six
independent equations (3.43)
- ()
& T 2\am  9m

may be viewed as a system of six partial differential equations for determining the three
displacement components w. The system is over-determined and will not, in general,
possess a solution for an arbitrary choice of the strain components ;. Therefore if the
displacement components u are to be single-valued and continuous, some conditions must
be imposed upon the strain components. The necessary and sufficient conditions for such
a displacement field are expressed by the equations

&, m Pom P _ P _ (8.108)
0Tk ITm 0x 9T} 0%; 0Tm 0x: 9%k

There are eighty-one equations in all in (8.108) but only six are distinct. These six written
in explicit and symbolic form appear as
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12 2 2
1 %,y i a €an = 2 muu_m
ax2 3zt 3T 0%2
3 9% .
2 F+ 2 = sl
9z [ x2 02
12, 2
s Zm, % = gl
0xy dxy 023 071
4 hA\an + ma..__ + mn_nv = mna: ~ Aol g V= = e Ah.nQ.S
* 3\ T | aTa  8zs) %2873
5. Ll fu,ley o e
A \9Z1 9z2  9xs T dxadxm
6. 8 Awn.mm + WH — gv = .w|»m_u
dxa \dx; = 9T 0z3 T 8T10%2

Compatibility equations in terms of the Lagrangian linear strain tensor l; may also be

43.#.»&: down by an obvious correspondence to the Eulerian form given above. For plane
strain parallel to the z,2: plane, the six equations in (3.104) reduce to the single equation

%, B¢,y 9%,
Uy 2 - 22 o V,XEXV =0
mRN mnﬂm %1 8T2 x x A%.NQMV

where E is of the form given by (3.99).

Solved Problems

DISPLACEMENT AND DEFORMATION (Sec. 3.1-3.5)

3.1.

3.2.

With respect .no superposed material axes X; and spatial axes the displacement
mm_.a of a continuum vomx is given by 21 =X, 2:= X2+ AX,, 2= X3;+ AX, where
A is a constant. Determine the displacement vector components in both the material
and spatial forms.

Im.—.oE Q.M.c directly, the displacement components in material form are u; =z, -X, =0,
wﬂn = M»IMW = .»Awu. \M.r.. VH\AN.._ = .MMW = MN». ; ~=<Mnm=n the given displacement relations to obtain
1=, Xp=(z,—Azg)/(1—-A?), X3=(z3— 2,)/(L— A?), the spatial components of
ul =0, s = Alzg— Az (1~ A3), ug = Alzy — Az/(1 — A7), ? v o
From these results it is noted that the originall i i i i

TS y straight line of material particles expressed

v« Mn._ =0, X,+X;=1/(1+A) occupies the location z, =0, za+ x5 =1 after &mu_nwn-:g?

Likewise the particle line X; =0, X;=X; b after displ t z, =0, z;=x; (Inter-
pret the physical meaning of this.) r ¥

For Em displacement field of Problem 3.1 determine the displaced location of the
Ew&mﬂm_ particles which originally comprise (a) the plane circular surface X:=0
X:+X3=1/(1—A?, (D) the infinitesimal cube with edges along the coordinate wxmm
of length dX;=dX. Sketch the displaced configurations for (@) and (b) if A=4.
(a) By the direct substitutions X, = (z —Az)/(1—A?) and X;= (z3— — A% i
surface becomes the elliptical u:ul.wnm uvMuA.+>uwww Ia?»n“un M« "Ma .*..» MWVMM. Hb Avu.. ISMNW"_ nnnm_.nw
A =}, this is bounded by the ellipse mnw — 8x,23 + muw = 3 which when referred to its

principal axes } (at 45° with z;, i = 2,3) has the equatio 22 22 = i
shows this displacement pattern. 52 n 23+ 9% 3. Fig. 8-10 below



