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1 The heat equation

The heat equation reads

∂u

∂t
= α∇2u

u(t, x, y, z)|∂Ω = uD (1)

u(t, x, y, z)|t=0 = u0(x, y, z)

where α is an positive constant defined by

α =
κ

cpρ

with κ being the thermal conductivity, ρ the mass density and cp the specific heat capacity of the
material.

We are going to semidiscretize the system by projecting the spatial variables to a finite element
subspace Xh. Multiply (1) by a test function v and integrate over the domain Ω to get∫∫∫

Ω

∂u

∂t
v dV = −

∫∫∫
Ω

α∇u∇v dV

Note that we have only semidiscretized the system, and as such our unknown u is given as a linear
combination of the spatial basis functions, and continuous in time, i.e.

uh(x, y, z, t) =
n∑
i=1

uih(t)ϕi(x, y, z).

The variational form of the problem then reads: Find uh ∈ XD
h such that∫∫∫

Ω

∂u
∂t v dV = −

∫∫∫
Ω

α∇u∇v dV, ∀v ∈ Xh

⇒
∑
i

∫∫∫
Ω

ϕiϕjdV
∂uih
∂t = −

∑
i

∫∫∫
Ω

α∇ϕi∇ϕjdV uih ∀j

which in turn can be written as the linear system

M
∂u

∂t
(t) = −Au(t) (2)

which is an ordinary differential equation (ODE) with the matrices defined as

A = [Aij ] =

∫∫∫
Ω

α∇ϕi∇ϕj dV

M = [Mij ] =

∫∫∫
Ω

ϕiϕj dV.



b) Time integration

The system (2) is an ODE, which should be familiar from previous courses. Very briefly an ODE
is an equation on the form

∂y

∂t
= f(t, y)

where y may be a vector. The simplest ODE solver available is Eulers method

yn+1 = yn + hf(tn, yn).

More sophisticated include the improved eulers methods

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn + hf(tn, yn)))

or the implicit trapezoid rule

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1))

In practise, all sufficiently stable Runge-Kutta methods or linear multistep methods can be used.

2 Structural analysis (break)

We are in this problem going to consider the linear elasticity equation. The equations describe
deformation and motion in a continuum. While the entire theory of continuum mechanics is an
entire course by itself, it will here be sufficient to only study a small part of this: the linear elasticity.
This is governed by three main variables u, ε and σ (see table 1). We will herein describe all
equations and theory in terms of two spatial variables (x, y), but the extension into 3D space
should be straightforward.

u =

[
ux
uy

]
-

the displacement vector measures
how much each spatial point has moved
in (x, y)-direction

ε =

[
εxx εxy
εxy εyy

]
-

the strain tensor measures how
much each spatial point has deformed
or stretched

σ =

[
σxx σxy
σxy σyy

]
-

the stress tensor measures how
much forces per area are acting on a
particular spatial point

Table 1: Linear elasticity variables in two dimensions

Note that the subscript denotes vector component and not derivative, i.e. ux 6= ∂u
∂x .

These three variables can be expressed in terms of each other in the following way:

u = u(x) (3)

ε = ε(u) (4)

σ = σ(ε) (5)



The primary unknown u (the displacement) is the one we are going to find in our finite element
implementation. From (3) we will have two displacement values for each finite element ”node”,
one in each of the spatial directions.

The relation (4) is a purely geometric one. Consider an infinitesimal small square of size dx and
dy, and its deformed geometry as depicted in figure 1. The strain is defined as the stretching of
the element, i.e. εxx = length(ab)−length(AB)

length(AB) . The complete derivations of these quantities is

Figure 1: An infinitesimal small deformed rectangle

described well in the Wikipedia article on strain, and the result is the following relations

εxx(u) =
∂ux
∂x

εyy(u) =
∂uy
∂y

(6)

εxy(u) =
1

2

(
∂ux
∂y

+
∂uy
∂x

)
.

Note that these relations are the linearized quantities, which will only be true for small deforma-
tions.

For the final relation, which connects the deformation to the forces acting upon it, we turn to
the material properties. Again, there is a rich literature on the subject, and different relations or
physical laws to describe different materials. In our case, we will study small deformations on
solid materials like metal, wood or concrete. It is observed that such materials behave elastically
when under stress of a certain limit, i.e. a deformed geometry will return to its initial state if all
external forces are removed. Experiment has shown that the Generalized Hooks Law is proving
remarkable accurate under such conditions. It states the following. Consider a body being dragged
to each side by some stress σxx as depicted in figure 2. Hooks law states that the forces on a

http://en.wikipedia.org/wiki/Deformation_(mechanics)#Normal_strain


Figure 2: Deformed geometry under axial stresses

spring is linearly dependant on the amount of stretching multiplied by some stiffness constant, i.e.
σxx = Eεxx. The constant E is called Young’s modulus. Generalizing upon this law, we see that
materials typically contract in the y-direction, while being dragged in the x-direction. The ratio of
compression vs expansion is called Poisson’s ratio ν and is expressed as εyy = −νεxx. This gives
the following relations

εxx =
1

E
σxx

εyy = − ν
E
σxx

Due to symmetry conditions, we clearly see that when applying a stress σyy in addition to σxx we
get

εxx =
1

E
σxx −

ν

E
σyy

εyy =
1

E
σyy −

ν

E
σxx

Finally, it can be shown (but we will not) that the relation between the shear strain and shear stress
is εxy = 21+ν

E σxy. Collecting the components of ε andσ in a vector, gives us the compact notation

ε̄ = C−1σ̄ εxx
εyy
εxy

 =

 1
E − ν

E 0
− ν
E

1
E 0

0 0 1+ν
E

 σxx
σyy
σxy





or conversely

σ̄ = Cε̄ (7) σxx
σyy
σxy

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1− ν

 εxx
εyy
εxy


For a body at static equilibrium, we have the governing equations

∇σ(u) = −f (8)[
∂

∂x
,
∂

∂y

] [
σxx σxy
σxy σyy

]
= − [fx, fy]

and some appropriate boundary conditions

u = g, on ∂ΩD (9)

σ · n̂ = h, on ∂ΩN (10)

a) Weak form

It can be shown that (8) can be written as the scalar equation

2∑
i=1

2∑
j=i

∫
Ω
εij(v)σij(u) dA =

2∑
i=1

∫
Ω
vifi dA+

2∑
i=1

2∑
j=1

∫
∂Ω
viσijn̂ dS

(where we have exchanged the subscripts (x, y) with (1, 2)) by multiplying with a test function

v =

[
v1(x, y)
v2(x, y)

]
and integrating over the domain Ω Moreover, show that this can be written in

compact vector form as∫
Ω
ε̄(v)TCε̄(u) dA =

∫
Ω
vTf dA+

∫
∂Ω
vTσn̂ dS

=

∫
Ω
vTf dA+

∫
∂Ω
vTh dS

b) Galerkin projection

As in 2b) let v be a test function in the space Xh of piecewise linear functions on some triangula-
tion T . Note that unlike before, we now have vector test functions. This means that for each node
î, we will have two test functions

ϕî,1(x) =

[
ϕî(x)

0

]
ϕî,2(x) =

[
0

ϕî(x)

]



Let these functions be numbered by a single running index i = 2̂i+d, where i is the node number
in the triangulation and d is the vector component of the function.

Show that by inserting v = ϕj and u =
∑

iϕiui into (11) you get the system of linear equations

Au = b

where

A = [Aij ] =

∫
Ω
ε̄(ϕi)

TCε̄(ϕj), dA

b = [bi] =

∫
Ω
ϕTi f dA+

∫
∂Ω
ϕTi h dS

(Hint: ε̄(·) is a linear operator)

Stress analysis

Solving (8) with a finite element method gives you the primary unknown: the displacement u. If
you are interested in derived quantities such as the stresses, these can be calculated from (7). Note
that σ is in essence the derivative of u which means that since u is C0 across element boundaries,
then σ will be discontinuous. To get stresses at the nodal values, we propose to average the stresses
over all neighbouring elements.

Loop over all elements and evaluate (the constant) stresses on that element. For each node, assign
the stresses to be the average stress over all neighbouring elements. This method is called ”Stress
Recovery”.

3 Vibration analysis (shake)

Figure 3: Mass-spring-model

The forces acting on a point mass m by a spring is given by the well known Hooks law:

mẍ = −kx

This can be extended to multiple springs and multiple bodies as in figure 4



Figure 4: 2 degree-of-freedom mass spring model

The physical laws will now become a system of equations instead of the scalar one above. The
forces acting on m1 is the spring k1 dragging in negative direction and k2 dragging in the positive
direction.

m1ẍ1 = −k1x1 + k2(x2 − x1)

This is symmetric, and we have an analogue expression for m2. The system can be written in
matrix form as [

m1 0
0 m2

] ¨[
x1

x2

]
=

[
−k1 − k2 k2

k2 −k2 − k3

] [
x1

x2

]
M ẍ = Ax

When doing continuum mechanics, it is the exact same idea, but the actual equations differ some.
Instead of discrete equations, we have continuous functions in space and the governing equations
are

ρü = ∇σ(u)

semi-discretization yields the following system of equations

M ü = −Au (11)

with the usual stiffness and mass matrix

A = [Aij ] =

∫∫∫
Ω

ε̄(ϕi)
TCε̄(ϕj) dV

M = [Mij ] =

∫∫∫
Ω

ρϕTi ϕj dV.

We are now going to search for solutions of the type:

u = ueωit (12)

which inserted into (11) yields
ω2Mu = Au (13)

This is called the generalized eigenvalue problem.
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