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Contact during exam:
Anne Kværnø tel. 92663824

Exam in TMA4220
Numerical Solution of Partial Differential Equations Using Element

Methods

Wednesday December 5, 2012
Time: 15.00 – 19.00

Auxiliary materials: Simple calculator (Hewlett Packard HP30S or Citizen SR-270X)
All printed and hand written material.

Deadline for the grading: 21.12.2012.

Problem 1

Given the Poisson equation

−∆u = f in Ω (1)

with boundary conditions

u = 0 on ΓD,
∂u

∂n
= q on ΓN .

where Ω is the domain between a circle of radius Ri
and one of radius Ro, ΓD is the outer boundary and
ΓN the inner.

ΓD

ΓN

Ω

Ro

R
i

a) Establish the weak formulation

find u ∈ V such that a(u, v) = F (v), ∀v ∈ V. (2)

That means, identify V and find expressions for a and F ,

Solution:
Multiply by a test function v on both sizes, integrate over Ω and use Greens Theorem:∫

Ω

∇u∇vdΩ−
∫

ΓD

∂u

∂n
vdγ +

∫
ΓN

∂u

∂n
vγ =

∫
Ω

fvdΩ.
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Now, for the integrals to exist, we require v, u ∈ H1(Ω). Further, since we now nothing about
∂u/∂n on ΓD we let v = 0 on that boundary. Which, by pure chance is the same boundary
condition as imposed on u. So

V = {v ∈ H1(Ω) : v|ΓD
= 0} = H1

ΓD
(Ω),

a(u, v) =

∫
Ω

∇u∇vdΩ, F (v) =

∫
Ω

fvdΩ +

∫
ΓN

qvdγ.

In the following, let f = −4, q = 0.5, Ri = 0.5 and Ro = 1. Since f and q are both
constant, we note that the solution u only depend on the distance from the center r, and
the problem is reduced to a one-dimensional case.

b) Show that the bilinear form a(u, v) in the weak formulation (2) now is

a(u, v) =

∫ 1

0.5
r
∂u

∂r

∂v

∂r
dr, V = {v ∈ H1(0.5, 1) : v(1) = 0}.

Find also an expression for F (v) in this case.

Hint: Use polar coordinates, see the appendix at the end of the set.

Solution:
Using polar coordinates, you get

a(u, v) =

∫ Ro

Ri

∫ 2π

0

∂u

∂r

∂v

∂r
dθ dr = 2π

∫ Ro

Ri

r
∂u

∂r

∂v

∂r
dr.

Similar,

F (v) = 2π · f ·
∫ Ro

Ri

rvdr − 2πRiqv(Ri)

So, dividing by 2π on both sides gives the expression for a(u, v) and

F (v) = −4

∫ 1

0.5

rvdr − 0.25 v(0.5).

c) Find the exact solution u(r) of this problem.

Solution:
First: Find the strong form of the problem. By using partial integration we get

a(u, v) = −
∫ Ro

Ri

∂

∂r
(r
∂u

∂r
)v + r

∂u

∂r
v

∣∣∣∣Ro

Ri

so that

a(u, v)− F (v) = −
∫ Ro

Ri

(
∂

∂r
(r
∂u

∂r
) + fr

)
vdr + r(

∂u

∂r
+ q)v

∣∣∣∣Ro

Ri

= 0

which is true for all v ∈ V if

− ∂

∂r
(r
∂u

∂r
) = fr,

∂u

∂r
(Ri) = −q, u(Ro) = 0.

Or you could simply use (1) in polar coordinates, and you have the equations directly. In-
serting the given values gives

∂

∂r
(r
∂u

∂r
) = 4r,

∂u

∂r
(
1

2
) = −1

2
, u(1) = 0.
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Integrating twice, and using the boundary conditions gives

u(r) = r2 − 1− 3

4
ln(r).

We will now like to find an approximation to the solution of the one-dimensional problem
by use of the finite element method with linear, nodal basis functions on a uniform grid,
that is Vh = X1

h, and h = 0.5/M .

d) Find the elemental stiffness matrix and the elemental load vector for the element
K = [rk−1, rk], where rk = 0.5 + h · k, k = 1, 2, · · · ,M .

Solution:
The linear basis functions are

ϕKk−1(r) =
rk − r
h

, ϕKk (r) =
r − rk−1

h
.

Thus

aKk−1,k−1 =

∫ rk

rk−1

r
1

h

1

h
dr =

r2
k − r2

k−1

2h2
=
rk + rk−1

2h
, aKk−1,k =

∫ rk

rk−1

r
1

h
(− 1

h
)dr = −rk + rk−1

2h
, etc,

bKk−1 = −4

∫ rk

rk−1

r
rk − r
h

dr = −2

3
(2rk−1+rk)h, bKk = −4

∫ rk

rk−1

r
r − rk−1

h
dr = −2

3
(rk−1+2rk)h.

So
AK =

rk + rk−1

2h
·
(

1 −1
−1 1

)
, bK = −2h

3
·
(

2rk−1 + rk
rk−1 + 2rk

)
.

e) The finite element method can be formulated as

Ahuh = bh

where uh = (u0, u1, · · · , uM−1)
T where uk ≈ u(rk). Show that Ah is the symmetric

tridiagonal matrix

Ah =



γ0 β0

β0 γ1
. . .

. . . . . . . . .
. . . . . . βM−2

βM−2 γM−1


and find for βk and γk (only for k 6= 0 and k 6= M − 1.).
Solution:
Using a standard assembly, we get (for k > 0) that

γk = aKk,k + aK+1
k,k =

rk−1 + 2rk + rk−1

2h
=

2rk
h
.

βk = aK+1
k,k+1 = aK+1

k+1,k = −rk + rk+1

2h
.

The stiffness matrix is symmetric since the bilinear form a(u, v) is symmetric.

Problem 2
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a) Given a quadratic reference finite element K̂, with nodes in the corners. Write down
the four bilinear nodal basis functions ϕ̂α̂(ξ, η) for this element. The index α̂ refers
to the nodes.

Solution:
With Â = (0, 0), B̂ = (1, 0), Ĉ = (1, 0) and D̂ = (1, 1) we get the bilinear nodal basis
functions:

ϕ̂A(ξ, η) = (1− ξ)(1− η) ϕ̂B(ξ, η) = ξ(1− η)

ϕ̂C(ξ, η) = (1− ξ)η ϕ̂D(ξ, η) = ξη

ξ

η

1

1

K̂

x

y

h1

k

h2

K

b) Find a bilinear mapping x(ξ, η), y(ξ, η) mapping each node from the quadratic ref-
erence element to the corresponding node of the physical element K. Find also the
Jacobian J of the mapping.

Solution:
The mapping is given by

x(ξ, η) = h1ξ + (h2 − h1)ξη, y(ξ, η) = kη,

and the Jacobian becomes

J(ξ, η) =

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
=

(
h1 + (h2 − h1)η (h2 − h1)ξ

0 k

)
.

c) The mapping in b) is used to define the nodal basis functions ϕα(x, y) = ϕ̂α̂(ξ(x, y), η(x, y))
on K. We would like to compute terms of the kind:

aKα,β =

∫
K
∇ϕα · ∇ϕβ dxdy =

∫
K̂

(?) dξdη.

Find an expression for the integrand (?) on the right hand side, in terms of J and
the basis functions on K̂.

Set h1 = 0.8, h2 = 1.2, k = 0.8 and find an approximation to aKα,α, where α refer to
the node in the lower left corner, (0, 0). Use the simple numerical quadrature formula∫

K̂
g(ξ, η)dξdη ≈ g(

1

2
,
1

2
)

to approximate the integral.
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Solution:
We know from the lectures (show the details) that

∇ϕα(x(ξ, θ), y(ξ, θ)) = J−T∇ϕ̂α̂, and dx dy = |J |dξdη.

so
aKα,β =

∫
K̂

(J−T∇ϕ̂α̂) · (J−T∇ϕ̂β̂)|J |dξdη.

Using the given values for h1, h2 and k gives

J =

(
0.8 + 0.4η 0.4ξ

0 0.8

)
, |J | = 0.64 + 0.32η,

We also have that
∇ϕ̂α̂ =

(
−1 + ξ
−1 + η

)
So the whole thing becomes quite nonlinear, but using the given quadrature formula, the whole
thing becomes

aKα,α ≈ 0.4.

Problem 3

What is a Delaunay grid, and why is it at-
tractive?

Is the grid to the right Delaunay? Justify
your answer.

How can you change it to make it Delaunay?
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Solution:

For the definition of the Delaunay grid, I refer to
Quarteroni 147a

The attractive property is the second one, the
max-min regularity property.
The interpolation error on one element K de-
pends on the sphericity ρK of that element. The
bigger ρk, the smaller error, see Theorem 4.4 in
Quarteroni. And for a given set of gridpoints,
the Delaunay triangulation optimize the grid with
respect to this property.
The grid is obviously not Delaunay, since at least
for one of the elements, the circumscribed circle
contains a node, as indicated on the picture to the
left.
The situation can be corrected by a diagonal ex-
change, the dashed line is replaced by the red one.
By inspection, we can see that no other diagonal
exchanges are necessary, thus the new grid is De-
launay.

aYou are supposed to elaborate this somewhat
more in your answer sheet.

Problem 4
Given the variational problem

find u ∈ V such that a(u, v) = F (v) ∀v ∈ V (3)

with

a(u, v) =

∫ 1

0
uxvxdx+ κ

∫ 1

0
uvdx, F (v) =

∫ 1

0
vdx, V = H1(0, 1),

a) For which κ is there a unique solution to (3)? Justify your answer.

Solution:
For existence and uniqueness, use Lax-Milgram. Remember that

‖v‖2H1(0,1) =

∫ 1

0

(v2 + v2
x)dx.

The Sobolev space H1(0, 1) is a Hilbertspace.
The form F is clearly linear. It is also continuous, since

|F (v)| = |
∫ 1

0

vdx| = ‖v‖L2(0,1) ≤ ‖v‖H1(0,1).

The form a(·, ·) is obviously bilinear. It is continuous since

|a(u, v)| = |
∫ 1

0

uxvxdx+ κ

∫ 1

0

uvdx|

≤ max(1, |κ|) |
∫ 1

0

(uxvx + uv)dx|

≤ max(1, |κ|) ‖u‖H1(0,1)‖v‖H1(0,1) Cauchy-Schwarz
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We also have to check for coercivity:

a(v, v) =

∫ 1

0

(v2
x + κv2)dx ≥ min(1, κ)‖v‖2H1(0,1),

so a is coercive if κ > 0.

We conclude that the problem has a unique solution for κ > 0.

b) Let κ satisfy the conditions for solvability found in a).

Assume that you want to find an approximation uh to the solution by solving the
variational problem on a finite dimensional subspace Vh ⊂ H1(0, 1). Prove that

‖u− uh‖H1(0,1) ≤ C‖u− vh‖H1(0,1) ∀vh ∈ Vh.

and find an appropriate constant C.

Solution:
See Quarteroni, p. 65. The constant is

C =
M

α
=

max(1, κ)

min(1, κ)
= max(κ,

1

κ
).

Appendix

Differential operators in polar coordinates (r, θ)

grad g = ∇g =

(
∂g

∂r
,

1

r

∂g

∂θ

)T
divF = ∇ · F =

1

r

∂

∂r
(rFr) +

1

r

∂Fθ
∂θ

∆g =
1

r

∂

∂r

(
r
∂g

∂r

)
+

1

r2
∂2g

∂θ2
.


