Solution to exam, TMA4220

December 10, 2015

Max number of points: 135

Problem 1

a) (10 p) $V = H^1(\Omega),$

$$a(u,v) = \int_{\Omega} \mu \nabla u \cdot \nabla v + b \cdot \nabla u v + \sigma u v \, dx, \qquad F(v) = \int_{\Omega} f v \, dx + \mu \int_{\partial \Omega} v h \, dx.$$

b) (10 p) The BVP is

$$\begin{cases} b \cdot \nabla u = 2 & \text{for } x \in \Omega \\ u(x) = 0 & \text{for } x \in \Gamma_{-} \end{cases}$$

where $\Gamma_{-} = \{(x_1, x_2) \in \partial \Omega : x_1 = 0 \text{ or } x_2 = 0\}.$

Characteristics solve $\dot{X}(s) = b$, $X(0) = \bar{X}$, so $X(s) = \bar{X} + sb$. Given $x \in \Omega$, we have X(s) = x when $s = \min(x_1, x_2)$ and $\bar{X} = x - \min(x_1, x_2)b$. Along this characteristic, we have

$$\frac{d}{ds}u(X(s)) = 2 \quad \Rightarrow \quad u(X(s)) = 2s + u(\bar{X}) = 2s.$$

Thus, $u(x) = 2 \min(x_1, x_2)$.

c) (5 p) We need $h \le \frac{\mu}{|b|} = \frac{1}{\sqrt{2} \cdot 100}$.

Problem 2

a) (10 p)

The weak formulation is

find
$$u(t) \in V$$
 such that $\left(\frac{\partial u}{\partial t}(t), v\right) + a(u, v) = 0$ for all $v \in V$

where $V := H_0^1(\Omega)$ and a is the bilinear form $a(u, v) = c(\nabla u, \nabla v) - b(u, v)$.

b) (10 p) a is clearly bilinear, and is continuous since

$$\begin{split} |a(u,v)| & \leq |c||u|_{H^1}|v|_{H^1} + |b|||u||_{L^2}||v||_{L^2} \\ & \leq \max(|c|,|d|) \left(|u|_{H^1} + ||u||_{L^2}\right) \left(|v|_{H^1} + ||v||_{L^2}\right) \\ & \leq 2 \max(|c|,|d|)||u||_{H^1}||v||_{H^1}. \end{split}$$

For coercivity, we have

$$a(u,u) = c|u|_{H^1}^2 - b||u||_{L^2}^2.$$

Let C_{Ω} be the Poincaré constant for Ω (so that $||u||_{L^2} \leq C_{\Omega}|u|_{H^1(\Omega)}$ for all $u \in H^1_0(\Omega)$). If b > 0 then

$$a(u,u) \ge c|u|_{H^1}^2 - bC_{\Omega}^2|u|_{H^1}^2 = (c - bC_{\Omega}^2)|u|_{H^1}^2,$$

so we need $c > bC_{\Omega}^2$. If $b \le 0$ then

$$a(u,u) = c|u|_{H^1}^2 + |b|||u||_{L^2}^2 \ge c|u|_{H^1}^2$$

so we need c > 0. Thus, a is coercive provided

$$c > \max(0, bC_{\Omega}^2).$$

c) (10 p)

We end up with:

$$M\frac{\xi^{n+1} - \xi^n}{\Delta t} - bM\xi^{n+1} + cA\xi^{n+1} = 0$$

or

$$((1 - b\Delta t)M + c\Delta tA)\xi^{n+1} = M\xi^n$$

where $M_{ij} = (\varphi_i, \varphi_j)$ and $A_{ij} = (\nabla \varphi_i, \nabla \varphi_j)$.

Problem 3

a) (10 p)

Find $\xi \in \mathbb{R}^4$ such that $A\xi = b$, where

$$A = 5 \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 \\ & & -1 & 2 \end{pmatrix}, \qquad b = \tilde{b} + 5e_4, \qquad \tilde{b}_i = \int_0^1 f(x)\varphi_i(x) \ dx$$

and $e_4 = (0, 0, 0, 1)^T$.

- **b**) (5+5=10 p)
 - (i) We have the basic error estimate

$$\|u-u_h\|_{H^1(\Omega)} \leq C \left(\sum_i h_{K_i}^2 |u|_{H^2(K_i)}^2\right)^{1/2} = C \left(\sum_i h_{K_i}^2 \|f\|_{L^2(K_i)}^2\right)^{1/2},$$

where $h_{K_i} \equiv 1/5$.

(ii) |f| has a maximum at x = 1, so the error will be largest in the interval $K_5 = [0.8, 1]$, so we should put a node in this interval.

Problem 4 (10 p)

Cea's lemma.

Problem 5 (10 p)

Impose function values $v(x_i)$ and derivatives $v'(x_i)$ at the nodes x_i . Since each element domain K_i has two nodes, this constitutes 4 degrees of freedom, so we need at least r = 3.

Problem 6

a) (10 p)

It's easiest to find Ψ^{-1} first:

$$\Psi^{-1}(y) = (ay_1 + by_2, cy_2)$$

which gives

$$\Psi(x) = \left(\frac{x_1 - bx_2/c}{a}, \frac{x_2}{c}\right).$$

We have

$$J = D\Psi^{-1} = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, \qquad \det(J) = ac, \qquad J^{-1} = \frac{1}{ac} \begin{pmatrix} c & -b \\ 0 & a \end{pmatrix}.$$

b) (10 p)

Change of variables gives

$$\begin{split} \int_K \nabla \varphi_\alpha(x) \cdot \nabla \varphi_\beta(x) \; dx &= \int_{\hat{K}} \nabla_y \hat{\varphi}_\alpha(y) \cdot J^{-1} J^{-T} \nabla_y \hat{\varphi}_\beta(y) |\det(J)| \; dy \\ &= \frac{1}{ac} \int_{\hat{K}} \nabla_y \hat{\varphi}_\alpha(y) \cdot \begin{pmatrix} b^2 + c^2 & -ab \\ -ab & a^2 \end{pmatrix} \nabla_y \hat{\varphi}_\beta(y) \; dy. \end{split}$$

Problem 7

a) (10 p)

The Delaunay triangulation of x_1, \ldots, x_N is a conforming triangulation \mathcal{T}_h of $conv(x_1, \ldots, x_N)$ (the convex hull of x_1, \ldots, x_N) such that the internal of the circumcircle of each triangle contains none of the points x_1, \ldots, x_N .

a) (10 p)

