

Department of Mathematical Sciences

Examination paper for TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods

Academic contact during examination: Ulrik Skre Fjordholm Phone: 735 50284

Examination date: 4. December 2015 Examination time (from-to): 09:00-13:00 Permitted examination support material: C Approved calculator

No other aids

Language: English Number of pages: 4 Number of pages enclosed: 0

Checked by:

Problem 1

a) Consider the equation

$$b \cdot \nabla u + \sigma u = \mu \Delta u + f \qquad \text{for } x \in \Omega \tag{1}$$

where b is a constant vector, σ and μ are positive constants, and $f \in L^2(\Omega)$. Derive the weak formulation of (1) with Neumann boundary conditions

$$\frac{\partial u}{\partial n} = h \qquad \text{on } \partial \Omega$$

for some continuous function $h: \partial \Omega \to \mathbb{R}$.

b) Consider the equation (1), but with

$$b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \sigma = 0, \quad \mu = 0, \quad f(x) \equiv 2 \text{ and } \Omega = (0,1) \times (0,1).$$

If we want a homogeneous Dirichlet (i.e., u = 0) boundary condition, on which part of $\partial\Omega$ should this be imposed? Write down the resulting boundaryvalue problem (PDE + boundary values) and find the exact solution.

c) Consider the values from **b**), but with $\sigma = 1$ and $\mu = \frac{1}{100}$. We discretize (1) using the finite element method with X_h^1 elements. How small must *h* be in order to get an oscillation-free numerical solution? (Here you do *not* have to justify your answer.)

Problem 2 Consider the time-dependent problem

$$\begin{cases} \frac{\partial u}{\partial t} = bu + c\Delta u & \text{for } x \in \Omega, \ t > 0\\ u(x,0) = \bar{u}(x) & \text{for } x \in \Omega\\ u(x,t) = 0 & \text{for } x \in \partial\Omega, t > 0. \end{cases}$$
(2)

a) Write down the weak formulation of (2), that is, a statement of the form

find $u(t) \in V$ such that ... for all $v \in V$.

Be sure to specify the function space V.

- **b)** For what values of $b, c \in \mathbb{R}$ is (2) parabolic?
- c) We discretize (2) using the finite element method and Backward Euler time stepping. What is the vector equation satisfied by the vector of degrees of freedom $\xi^n \in \mathbb{R}^N$? (Here, n = 0, 1, 2, ... is the time step and N is the number of degrees of freedom.)

Problem 3 Consider the problem

$$\begin{cases} -u'' = f & \text{for } x \in (0, 1) \\ u(0) = 0, \ u(1) = 1. \end{cases}$$
(3)

a) Derive the finite element method for (3) using piecewise linear elements on the uniform mesh

 $K_i = [x_{i-1}, x_i], \qquad i = 1, \dots, 5$ where $x_i = \frac{i}{5}$ for $i = 0, \ldots, 5$. Compute the components of the stiffness matrix A.

- b) Assume that you have computed the numerical solution u_h from a) with f(x) = x(2x - 1).
 - (i) State the basic error estimate for this problem in terms of f.
 - (ii) In which cell K_i would you expect the largest error? If you could add a node x_6 to the mesh, where should you place it in order to decrease the overall error by as much as possible?

Problem 4 Consider the Galerkin problem

find $u \in V$ such that a(u, v) = F(v) for all $v \in V$

where a, F and V satisfy the conditions of the Lax–Milgram theorem. We approximate the solution u with the finite element method, using a finite element space $V_h \subset V$. Prove that the approximate solution u_h satisfies

 $||u - u_h||_V \leq C||u - v_h||_V \quad \text{for all } v_h \in V_h$

for some C > 0. What is this result called?

Let $K_i = [x_{i-1}, x_i]$ (for $i = 1, \ldots, N$) be a partition of $\Omega = (0, 1)$. Problem 5 Let V_h be the space of functions which are

- continuously differentiable on *all* of Ω ,
- piecewise r-th order polynomials on $\{K_1, \ldots, K_N\}$,

that is,

$$V_h = \Big\{ v \in C^1(\Omega) : v \Big|_{K_i} \in \mathcal{P}^r, \ i = 1, \dots, N \Big\}.$$

What is the smallest $r \in \{0, 1, 2, ...\}$ which we can use in this definition? For this value of r, where would you put the degrees of freedom in each element domain $K_i?$

Page 2 of 4

Problem 6

- a) Consider the map Φ which maps K to \hat{K} in Figure 1. (Here, a, b and c are given, positive numbers.) Write down Ψ and Ψ^{-1} , as well as the Jacobian J of Ψ^{-1} .
- **b)** Assume that we have defined some set of shape functions $\hat{\varphi}_{\alpha} : \hat{K} \to \mathbb{R}$ (for $\alpha = 0, \ldots, r$) on the reference triangle \hat{K} . We map them to K by setting $\varphi_{\alpha}(x) = \hat{\varphi}_{\alpha}(\Psi(x))$, and would like to compute the integral

$$A_{\alpha,\beta}^{K} = \int_{K} \nabla \varphi_{\alpha}(x) \cdot \nabla \varphi_{\beta}(x) \ dx.$$

Write this integral as an integral over \hat{K} using the reference shape functions $\hat{\varphi}_{\alpha}$, $\hat{\varphi}_{\beta}$ and the Jacobian J.

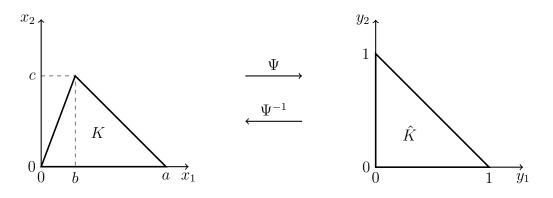


Figure 1: $\Psi: K \to \hat{K}$ maps the triangle K to the reference triangle \hat{K} .

Problem 7

- a) Define what we mean by the Delaunay triangulation of N points $x_1, \ldots, x_N \in \mathbb{R}^2$.
- **b**) Draw the Delaunay triangulation of the seven points in Figure 2. (You can either draw on the exam sheet or copy the figure to a separate sheet.)

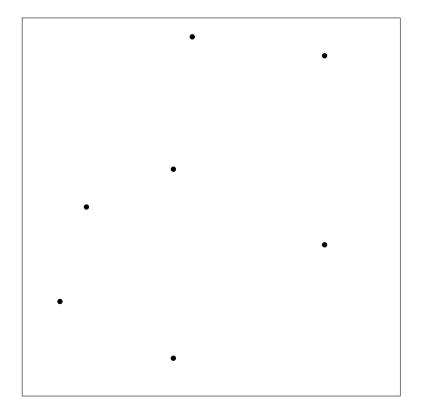


Figure 2: Delaunay triangulate these seven points!