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Chapter 2

Analysis of Stress

21 THE CONTINUUM CONCEPT

The molecular nature of the structure of matter is well mmnwd:.mrmn. In numerous
investigations of material behavior, however, the ?&&m:m& molecule is of no concern Nﬂn
only the behavior of the material as a whole is deemed E.Eom.nw:». For these .nwmmm. e
observed macroscopic behavior is usually explained by &mnmmn&:ﬁ molecular no-.m.&onn»_o:m
and, instead, by assuming the material to be continuously @_mﬂ._dsgn throughout its <.o_=mﬂm
and to completely fill the space it occupies. This &E&:ﬂ:ﬁ mes.a%.n of Bwﬁmn.um rm
fundamental postulate of Continuum Mechanics. Within the :E;wn_ozm. for which n e
continuum assumption is valid, this concept provides a framework for studying the behavior

of solids, liquids and gases alike.

Adoption of the continuum viewpoint as the basis for the Ews_oamznw_ description of
material behavior means that field quantities such as stress and @_mu_wnmamza are expressed
as piecewise continuous functions of the space coordinates and time.

22 HOMOGENEITY. ISOTROPY. MASS-DENSITY

A homogeneous material is one having jdentical properties at all U.omunm. .35.- nmuﬁmn»
to some property, & material is isotropic if that property is the same in m: m:mn»._ozm.w m_
point. A material is called anisotropic with respect to those properties which are directional
at a point.

The concept of density is developed from
the mass-volume ratio in the neighborhood
of a point in the continuum. In Fig. 2-1 nr.m
mass in the small element of volume AV is
denoted by aM. The average density of the
material within AV is therefore

aM

= (2.1)

Piavy IN2

The density at some interior point P of the
volume element AV is given mathematically
in accordance with the continuum concept by
the limit,

_aM _ M
p = lm3y = GV @2,
Mass-density p is a scalar quantity. Fig. 2-1
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23 BODY FORCES. SURFACE FORCES

Forces are vector quantities which are best described by intuitive concepts such as push
or pull. Those forces which act on all elements of volume of a continuum are known as
body forces. Examples are gravity and inertia forces. These forces are represented by the
symbol by (force per unit mass), or as p; (force per unit volume). They are related through
the density by the equation

\..F = Pi or ﬁ—u =p Am.uv

Those forces which act on a surface element, whether it is a portion of the bounding
surface of the continuum or perhaps an arbitrary internal surface, are known as surface

forces. These are designated by fi (force per unit area). Contact forces between bodies
are a type of surface forces.

24 CAUCHY'S STRESS PRINCIPLE. THE STRESS VECTOR

A material continuum occupying the region R of space, and subjected to surface forces
fi and body forces b, is shown in Fig. 2-2. As a result of forces being transmitted from
one portion of the continuum to another, the material within an arbitrary volume V
enclosed by the surface S interacts with the material outside of this volume. Taking m
as the outward unit normal at point P of a small element of surface AS of S, let Af( be the
resultant force exerted across AS upon the material within V by the material outside of
V. Clearly the force element Af: will depend upon the choice of AS and upon m. It should
also be noted that the distribution of force on AS is not necessarily uniform. Indeed the
force distribution is, in general, equipollent to a force and a moment at P, as shown in
Fig. 2-2 by the vectors Afi and AM;.

%3

4™

2!
Fig.2-2 Fig.2-3

The average force per unit area on AS is given by Afi/AS. The Cauchy stress principle

asserts that this ratio afi/as tends to a definite limit df/dS as AS approaches zero at the
point P, while at the same time the moment of Afi about the point P vanishes in the limiting
process. The resulting vector dfi/dS (force per unit area) is called the stress vector xv
and is shown in Fig. 2-3. If the moment at P were not to vanish in the limiting process,
a couple-stress vector, shown by the double-headed arrow in Fig. 2-3, would also be defined

at the point. One branch of the theory of elasticity considers such couple stresses but
they are not considered in this text.
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Mathematically the stress vector is defined by

The notation £ (or ) is used to emphasize the fact that the stress vector at a given
point P in the continuum depends explicitly upon the particular surface element AS chosen
there, as represented by the unit normal 7 (or 7). For some differently oriented surface
element, having a different unit normal, the associated stress vector at P will also be
different. The stress vector arising from the action across AS at P of the material within
V upon the material outside is the vector Inv. Thus by Newton's law of action and

reaction,

In“n. - xln. or g = - (2.5)

The stress vector is very often referred to as the traction vector.

25 STATE OF STRESS AT A POINT. STRESS TENSOR

At an arbitrary point P in a continuum, Cauchy’s stress principle associates a stress
vector nn. with each unit normal vector m, representing the orientation of an infinitesimal
surface element having P as an interior point. This is illustrated in Fig. 2-3. The
totality of all possible pairs of such vectors nv and m at P defines the state of stress at that
point. Fortunately it is not necessary to specify every pair of stress and normal vectors
to completely describe the state of stress at a given point. This may be accomplished by
giving the stress vector on each of three mutually perpendicular planes at P. Coordinate
transformation equations then serve to relate the stress vector on any other plane at the
point to the given three.

Adopting planes perpendicular to the coordinate axes for the purpose of specifying
the state of stress at a point, the appropriate stress and normal vectors are shown in

Fig. 2-4.

Fig. 2-4

For convenience, the three separate diagrams in Fig. 24 are often combined into a
single schematic representation as shown in Fig. 2-5 below.

Each of the three coordinate-plane stress vectors may be written according to (1.69) in
terms of its Cartesian components as

N L GO
o

e = t_m,t 2+ n%:mu + n_n: & = anz ) (2.6)

A A S A a
(ea)
tle) = n.-n»(@r— + n.nuuv MN + nmutm"_ = Puu m..
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Fig.2-5 Fig- 2-6
The nine stress vector components, R
&) —
4 = oy 2.7)

wnm.z.m components om.m .mmoozn.oamn Cartesian tensor known as the stress tensor. The
355_2.; stress dyadic is designated by Z, so that explicit component and matrix rep-
resentations of the stress tensor, respectively, take the forms

oy %2 % %y %12 %y
= o, [/ a, p—
z 21 %2 T2 or [e, __ = Oy Oy Oy (2.8)
O3 %32 Ta3 3 %2 Ym

Humo»onmw:%, the stress tensor components may be displayed with reference to the
coordinate planes as shown in Fig. 2.6. The components perpendicular to the planes
(4 Oy 035) BTE called normal stresses. Those acting in (tangent to) the planes (g5 0,5 0.
a5 Taps a,,) are called shear stresses. A stress component is positive when it wn»_w w_._u »m_m
positive direction of the coordinate axes, and on a plane whose outer normal points in one
of ﬁ_m positive coordinate directions. The component o, acts in the direction of the jth
oownm_sw»m axis and on the plane whose outward normal is parallel to the ith coordinate
axis. The stress components shown in Fig. 2-6 are all positive.

26 THE STRESS TENSOR — STRESS VECTOR RELATIONSHIP
The relationship between the stress ten-

sor o, at a point P and the stress vector nv
on a plane of arbitrary orientation at that
point may be established through the force
equilibrium or momentum balance of a small
tetrahedron of the continuum, having its
vertex at P. The base of the tetrahedron
is taken perpendicular to =, and the three
faces are taken perpendicular to the coor-
dinate planes as shown by Fig. 2-7. Des-
ignating the area of the base ABC as dS, the
areas of the faces are the projected areas,
dS: = dSn, for face CPB, dS:=dSn: for
face APC, dS:=dSns for face BPA or




48 ANALYSIS OF STRESS [CHAP. 2

dS, = dS(A-8) = dScos(,&) = dSm (2.9)

The average traction vectors |$.m_, on the faces and n_..v on the base, together with the
average body forces (including inertia forces, if present), acting on the tetrahedron are
shown in the figure. Equilibrium of forces on the tetrahedron requires that

n.ﬂn. ds — nﬂ%: s, — ?QAP, dSs — n.im-. dS; + pbtdV = 0 (2.10)

If now the linear dimensions of the tetrahedroen are reduced in a constant ratio to one
another, the body forces, being an order higher in the small dimensions, tend to zero more
rapidly than the surface forces. At the same time, the average stress vectors approach
the specific values appropriate to the designated directions at P. Therefore by this limiting
process and the substitution (2.9), equation (2.10) reduces to

1 dS = tEmdS + t¥ndS + 1, dS = t&0n,dS (2.11)
Cancelling the common factor dS and using the identity tie = a4 (2.11) becomes
1" = om, or t®=H-2 (2.12)
Equation (2.12) is also often expressed in the matrix form
_Hn“._& I _Hs.L T.E._ (2.13)
which is written explicitly
. Oy T2 %i
[t te=, t = [m,me,m| On T2 T (2.14)
Ty O3z Ous

The matrix form (2.14) is equivalent to the component equations
39 = n,0,, + N0, + 1,0,

nwn. = Mo, T+ MOy T N0y (2.15)

a

) —
ts” = no; T+ N0y + 140y,

27 FORCE AND MOMENT EQUILIBRIUM. STRESS TENSOR SYMMETRY

Equilibrium of an arbitrary volume V
of a continuum, subjected to a system of
surface forces xv and body forces b: (in-
cluding inertia forces, if present) as shown
in Fig. 2-8, requires that the resultant force
and moment acting on the volume be zero.

Summation of surface and body forces
results in the integral relation,

f ePas + §, owiav

I
=)

or

(2.16)
0

.‘. s + .‘. pbdV
s v

Replacing n"v here by on, and converting
the resulting surface integral to a volume
integral by the divergence theorem of Gauss
(1.157), equation (2.16) becomes Fig.2-8
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vh ?,:L + tw.v av. = 0 or

h?.mis.:\

Since the volume V is arbitrary, the integrand in (2.17) must vanish, so that

0 (£.17)

. o7, =0 or V-Z4+pb=0 (2.18)
which are called the equilibrium equations.

In the absence of distributed mom ili
abot the oren el et ents or couple-stresses, the equilibrium of moments

vh antite” dS + .h an®pb AV = 0

.hnx?im+hxx%% =0

in which z; is the position vector of the elements of surface and volume Again, making
. y

the substitution n"v =om, a i
t ¢ 4Ty applying the theorem of Gauss and using th
in (£.18), the integrals of (2.19) are combined and reduced to L s

vh auopdV =0 or h 2,dV =0 (2.20)

For the arbitrary volume V, (2.20) requires

or
(2.19)

epop =0 or I, =0 (2.21)
Equation (2.21) represents the equations o, = o,,, 0,, = 0y, 0,; = 7, OF in all
2 * Uy fitd

oy = oy (2.22)

which shows that the stress tensor is i i
g mctit na symmetric. In view of (2.22), the equilibrium equations

which appear in expanded form as g alf (2.23)
.an_l._ + .wq]h + wha_“ +pbr = 0
W+Wm+wlw%+vsuc (2.24)
m%__ + WMM + W“ + pbs =0

28 STRESS TRANSFORMATION LAWS

>.» the point P let the rectangular Cartesian
coordinate systems Pz;z.x; and Pz{z:z; of Fig.
m..w vm related to one another by the table of
direction cosines

B2 T2 T3

H\
1 an Qg @13

=
b3 @z a2z 23

’
z3 a3y @z Qag
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or by the equivalent alternatives, the transformation matrix [ag], or the transformation
dyadic A= n.:m,m_ Am.wmv

According to the transformation law for Cartesian tengors of order one (1.98), the

components of the stress vector nn: referred to the unprimed axes are related to the primed

axes components Rav by the equation 5 i
£ = a:&n. or t® = Act® (2.26)

Likewise, by the transformation law (1.102) for second-order Cartesian tensors, the stress
tensor components in the two systems are related by

o) = @80, O = A-ZA (2.27)
In matrix form, the stress vector transformation is written
6] = a5 (2.28)
and the stress tensor transformation as
o = [,loleg) (2.29)
Explicitly, the matrix multiplications in (2.28) and (2.29) are given respectively by
RBV an Gz Qi3 n“v.
g | = lan oz ox |l gP (2.30)
@ e an am ||t
Lt o Oh e, Gy G|l %2 a,; Gy Oy
and oy o On| = | O Ay || 00 T2 Ou |{ %2 G O (2.81)
L LY ay, Gy Oy || Cm %2 T Gy Cyy Oy

29 STRESS QUADRIC OF CAUCHY

At the point P in a continuum, let the m»womw
tensor have the values o, when referred to directions
parallel to the local Cartesian axes PZ {,Z, shown
in Fig. 2-10. The equation

oll; = =k (a constant) (2.92)
represents geometrically similar quadric surfaces

having a common center at P. The plus or minus
choice assures the surfaces are real.

The position vector r of an arbitrary point lying
on the quadric surface has components {, =77,
where m is the unit normal in the direction of r.
At the point P the normal component «,n; of the
stress vector nv has a magnitude

= tn, = t®on = amn,  (2.39) Fig.2-10

qz .
Accordingly if the constant I of (2.92) is set equal to o 7%, the resulting quadric

2.3
Q:w—ﬂ = qu‘wu (2.84)
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is called the stress quadric of Cauchy. From this definition it follows that the magnitude
o, of the normal stress component on the surface element dS perpendicular to the position
vector r of a point on Cauchy’s stress quadric, is inversely proportional to 7%, i.e. o, = *k*/7%
Furthermore it may be shown that the stress vector nv acting on dS at P is parallel to the
normal of the tangent plane of the Cauchy quadric at the point identified by r.

2.10 PRINCIPAL STRESSES. STRESS INVARIANTS. STRESS ELLIPSOID

At the point P for which the stress tensor com-
ponents are o, the equation (2.12), 29 = ouny, 8s-
sociates with each direction 7 a stress vector £{*.
Those directions for which nv and n are collinear as
shown in Fig. 2-11 are called principal stress direc-
tions. For a principal stress direction,

£t = om or t® = oh (2.95)
in which o, the magnitude of the stress vector, is
called a principal stress value. Substituting (2.85)
into (2.12) and making use of the identities n, = 5,
and ¢, =g¢,, results in the equations

(¢y— 8o, =0 or (Z—lo):% =0 (236) Fig. 2-11

In the three equations (2.36), there are four unknowns, namely, the three direction cosines
m and the principal stress value o.

For solutions of (2.36) other than the trivial one n; =0, the determinant of coefficients,
_qc - maq_. must vanish. Explicitly,

g,—c L L
_Q: - m:q_ =0 or Ty G0 - = 0 (2.37)
%3t T3 T 7

which upon expansion yields the cubic polynomial in o,

d— L +1e—1II; =0 (2.38)

where I, = o, =trZ (2.39)
MHM i WAQ:Q:|Q:.Q:V AN.%QV

I = oy = detZ (2.41)

are known respectively as the first, second and third stress invariants.

The three roots of (2.98), a,,, o1y o(y» are the three principal stress values. Associated
with each principal stress «,,,, there is a principal stress direction for which the direction
cosines n{¥’ are solutions of the equations

(0= oud)n® =0 or (E—a, )i =0 (k=123 (2.42)
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In (2.42) letter subscripts or superscripts enclosed by parentheses are merely labels and as
such do not participate in any summation process. The expanded form of (2.42) for the
second principal direction, for example, is therefore

0

_ @) 2) @)
AQ: Qﬁ.vs,_ + oy + oy My

oy ® + (00— a@)y? ot $=0 (2.43)

[¢] (&3 — ) =
o, nP + oy + (og3— 03 0

Because the stress tensor is real and symmetric, the principal stress values are also real.

When referred to principal stress directions, the stress matrix T:._ is diagonal,

oq, O 0 oy 0 0
_Hq& = 0 T oy 0 or T:._ =, 0 oy 0 A&&S
0 0 oy 0 0 oy

in the second form of which Roman numeral
subscripts are used to show that the principal
stresses are ordered, ie. o> oy > oy Since
the principal stress directions are coincident
with the principal axes of Cauchy’s stress
quadric, the principal stress values include both
the maximum and minimum normal stress
components at a point.

a2y

In a principal stress space, i.e. a space
whose axes are in the principal stress direc-
tions and whose coordinate unit of measure is
stress Evk.»n.,n.uvv as shown in Fig. 2-12,

A

the arbitrary stress vector t( has components Fig. 2-12

> > .Jl
3.; = oty nm.: = oty t" = o Aw&hv

according to (2.12). But inasmuch as (m)® + (n2)* + (na)* = 1 for the unit vector mi, (2.45)
requires the stress vector ™ to satisfy the equation

Anvvn Qw.)..v... CM_DJN
Aq:bn 3 AQ.SVM . (0)®

in stress space. This equation is an ellipsoid known as the Lamé stress ellipsoid.

= 1 (2.46)

211 MAXIMUM AND MINIMUM SHEAR STRESS VALUES

If the stress vector n.,; is resolved into orthogonal components normal and tangential to
the surface element dS upon which it acts, the magnitude of the :S.BE. component :E.%
be determined from (2.33) and the magnitude of the tangential or shearing component is

given by

of = Rn.ﬂn_ — a3 (2.47)
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This resolution is shown in Fig. 2-13 where
the axes are chosen in the principal stress d| =3
directions and it is assumed the principal i
stresses are ordered according to a, > oy, > oy,

Hence from (2.12), the components of n"v are

it

i,

A oy
nw... = o, _:
t® = am, (2.48) 7
Y
t = oy,
Lile =
and from (2.89), the normal component mag-
nitude is —r
oy = Q—3m + e.:esm + Q.:.:.w AN&@V | !
Substituting (2.48) and (2.49) into (2.47), the |
squared magnitude of the shear stress as a )
function of the direction cosines n, is given by Fig. 2-13
ol = QmSm + qm—Sw + Qm:s\m — ?;Sm + q:Sw + Q=—§wvn (2.50)

The maximum and minimum values of ¢; may be obtained from (2.50) by the method of
Lagrangian multipliers. The procedure is to construct the function

F = of —Anm (2.51)
in which the scalar A is called a Lagrangian multiplier. Equation (2.51) is clearly a function
of the direction cosines 7, so that the conditions for stationary (maximum or minimum)

values of F are given by oF/ani=0. Setting these partials equal to zero yields the
equations

n,{e? — Nq_?.u\:‘m + ﬂ:ﬁw + Q:—.;wv +A} =0 (2.52a)
n,{02% — 20y (on? +oym; + o2 +a) =0 (2.52b)
Ny (o3, — 2oy (e + oym; + oM +a) =0 (2.52¢)

which, together with the condition 7 =1, may be solved for A and the direction cosines
n4, 12, N3, conjugate to the extremum values of shear stress.

One set of solutions to (2.52), and the associated shear stresses from (2.50), are

m==1, =0, ns = 0; for which og =0 (2.58a)
=0, ne = =1, ny = 0; for which o, =0 (2.53b)
m = 0, ne = 0, ng = *=1; for which o, =0 (2.58¢)

The shear stress values in (2.59) are obviously minimum values. Furthermore, since (2.85)
indicates that shear components vanish on principal planes, the directions given by (2.58)
are recognized as principal stress directions.

A second set of solutions to (2.52) may be verified to be given by

= 0, ne = =1/\/2, ma = =1/V2; for which o5 = (o, —0,,)/2 (2.54a)
n = HH\A\M. ne = 0, ng = HH\&\MW for which oy = ?_:lq_v\w (2.54b)
n = HH\A\M. ny = HH\4\M~ nsg = 0; for which o = (¢, — 0,)/2 (2.54¢)

Equation (2.54b) gives the maximum shear stress value, which is equal to half the difference
of the largest and smallest principal stresses. Also from (2.54b), the maximum shear stress
component acts in the plane which bisects the right angle between the directions of the
thaximum and minimum principal stresses.
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212 MOHR’S CIRCLES FOR STRESS

A convenient two-dimensional graphical
representation of the three-dimensional state
of stress at a point is provided by the well-
known Mohr's stress circles. In developing
these, the coordinate axes are again chosen in
the principal stress directions at P as shown
by Fig. 2-14. The principal stresses are as-
sumed to be distinct and ordered according to

o > o 2 m (2.55)

For this arrangement the stress vector t{® rw.m
normal and shear components whose magni-

tudes satisfy the equations
o, = omi+ amd+ oy g (2.56)
o2+ ek = oini + om? + ofyng (2.57)

Combining these two expressions with the identity nou=1 and solving for the direction
cosines m, results in the equations

In " aloy— oy ) + (ag)?

() = ¢ ETE — =2 £ (2.580)
.y — o, oy — o) T (o )2

= e =|.V.M=w ?..vléﬁ : (2.58b)
oy — a)oy — o, )it (og)*

o = (o — “Xq_“ —oy) 2359

These equations serve as the basis for Mohr's stress circles, wrmﬂu in »rm “gtress plane” of
Fig. 2-15, for which the o, axis is the abscissa, and the og axI18 18 the on&:pmm. )
In (2.58a), since o;— o, > 0 and o,— oy, >0 from (2.55), and since (ms)* is non-negative,

the numerator of the right-hand side satisfies the relationship
(o — a.:v?.z = QEV + Avan =90 (2.59)
n the (o, a5) plane that are on or exterior to the circle

which represents stress points i
(2.60)

[oy = (on + a2 + (o0g)* = (G o)/2]
In Fig. 2-15, this circle is labeled Ci.

os

(2T o o oN

Fig. 2-15
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Similarly, for (2.58b), since o, —o0,, >0 and o,—o¢, <0 from (£.55), and since (n2)®
is non-negative, the right hand numerator satisfies

Aﬂz — Q:_v?z e n._v + Aﬂmvn =0 (2.61)
which represents points on or interior to the circle
[oy — (o + )21 + (052 = [(og— o)/2]° (2.62)

labeled C, in Fig. 2-15. Finally, for (2.58c), since o, —0, <0 and oy —o; <0 from
(2.55), and since (ns)? is non-negative,

qu - Q—XQZ - §=v + Avau =0 AN.QMV
which represents points on or exterior to the circle
[ow = (o3 + o )/2]% + (05)* = [(o,— en)/2]? (2.64)

labeled Cs in Fig. 2-15.

Since each “stress point” (pair of values of oy and o) in the (o, og) plane represents a
particular stress vector 2.9. the state of stress at P expressed by (2.58) is represented in
Fig. 2-15 as the shaded area bounded by the Mohr's stress circles. The diagram confirms
2 maximum shear stress of (¢, —o,)/2 as was determined analytically in Section 2.11.
Frequently, because the sign of the shear stress is not of critical importance, only the top
half of this symmetrical diagram is drawn.

The relationship between Mohr’s stress diagram and the physical state of stress may
be established through consideration of Fig. 2-16, which shows the first octant of a sphere
of the continuum centered at point P. The normal m at the arbitrary point @ of the
spherical surface ABC simulates the normal to the surface element dS at point P. Because
of the symmetry properties of the stress tensor and the fact that principal stress axes are
used in Fig. 2-16, the state of stress at P is completely represented through the totality of
locations @ can occupy on the surface ABC. In the figure, circle arcs KD, GE and FH
designate locations for @ along which one direction cosine of n has a constant value.
Specifically,

Fig. 2-16
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ny = cosgon KD, n2 = cospon GE, ms = cosf on FH

and, on the bounding circle ares BC, CA and AB,
m = cosw/2 = 0 on BC, m: = cosw/Z = 0 onCA, ms = cosw/2 = 0 on AB

According to the first of these and the equation (2.58a), stress vectors for @ located on

BC will have components given by stress points on the circle Ci m.= m._m 2.15. Likewise, CA
in Fig. 2-16 corresponds to the circle C:, and AB to the circle Cs in Fig. 2-15.

The stress vector components ay and og for an arbitrary location of Q may be nmnﬂ.-
mined by the construction shown in Fig. 2-17. Thus point e may be located on .Qu z—w
drawing the radial line from the center of Cs at the angle 28. ’ Note that angles Mmm nm
physical space of Fig. 2-16 are doubled in the stress space of Fig. N-HM (arc AB mM. =~m
90° in Fig. 2-16 whereas the conjugate stress points ¢, and o, are Hwo. wuwnn. on .uv.a d-
the same way, points g, h and f are located in Fig. 2-17 and nrm. wuunou_.._w»m pairs uoion N
circle arcs having their centers on the o, axis. The F»mmmmn»_os of circle uunom ge and hf
represents the components oy and o of the stress vector t{~ on the plane having the normal

direction m at Q in Fig. 2-16.

os

oN
o

Fig. 2-17

213 PLANE STRESS

inei i tate of plane
In the case where one and only one of the principal stresses is zero a 8
stress is said to exist. Such a situation occurs at an unloaded point on ﬁ._m free manmwnm
bounding a body. If the principal stresses are ordered, the Mohr's stress circles will have
one of the characterizations appearing in Fig. 2-18.

s as
s

o %] o,
o1 o1 LI o111 o o oy o5 1 N

o =10 o =0 aq=0

Fig. 2-18

CHAP. 2] ANALYSIS OF STRESS 57

If the principal stresses are not ordered and the direction of the zero principal stress
is taken as the z; direction, the state of stress is termed plane stress parallel to the x:z2
plane. For arbitrary choice of orientation of the orthogonal axes z; and 2. in this case,
the stress matrix has the form

a, o

11 12 o
)] = [ on O (2.65)
o 0 0

The stress quadric for this plane stress is a cylinder with its base lying in the zx: plane
and having the equation
0,82 + 20,,T,T, + 0,77 = +k? (2.66)

Frequently in elementary books on Strength of Materials a state of plane stress is rep-
resented by a single Mohr’s circle. As seen from Fig. 2-18 this representation is necessarily
incomplete since all three circles are required to show the complete stress picture. In
particular, the maximum shear stress value at a point will not be given if the single circle
presented happens to be one of the inner circles of Fig. 2-18. A single circle Mohr's diagram
is able, however, to display the stress points for all those planes at the point P which include
the zero principal stress axis. For such planes, if the coordinate axes are chosen in
accordance with the stress representation given in (2.65), the single plane stress Mohr's
circle has the equation

[oy — (o4, + 0x)2] + (0g)* = [(oy,— W2+ (o) (2.67)

The essential features in the construction of this circle are illustrated in Fig. 2-19. The
circle is drawn by locating the center C at oy = ?:+q§<m and using the radius
({03 — 02)/2]? + (o,,)* given in (2.67). Point A on the circle represents the stress
state on the surface element whose normal is 7 (the right-hand face of the rectangular
parallelepiped shown in Fig. 2-19). Point B on the circle represents the stress state on
the top surface of the parallelepiped with normal n,. Principal stress points o, and o, are
so labeled, and points E and D on the circle are points of maximum shear stress value.

os

&0 (7 o on

Fig. 2-19

214 DEVIATOR AND SPHERICAL STRESS TENSORS

It is very often useful to split the stress tensor o, into two component tensors, one of
which (the spherical or hydrostatic stress tensor) has the form
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o 0 O

I, = o = 0 o 0 (2.68)
0 0 o

where o, = —P = 0,,/3 is the mean normal stress, and the second (the deviator stress tensor)
M
has the form
S Sz 813

O T O L4t O3
Z, = a, [ Tag = 821 S22 Sa (2.69)
D girer 1 2 2
Oy [ Oy3 ™ 831 Sa2 S
This decomposition is expressed by the equations
o, = §m/3+s8, oOr Z=o,l+E, (2.70)

(]
The principal directions of the deviator stress tensor 8; are the same as those of the

stress tensor o;. Thus principal deviator stress values are s

Sy = %o~ M

The characteristic equation for the deviator stress tensor, comparable to (2.98) for the

stress tensor, is the cubic
§* + e — Mg, = 0 or s*+(siSn+ susm+ 8181)8 — S18uSur

is identically

It is easily shown that the first invariant of the deviator stress temsor Izp
zero, which accounts for its absence in (2.72).

Solved Problems

STATE OF STRESS AT A POINT. STRESS VECTOR.

STRESS TENSOR  (Sec. 2.1-2.6)

21. At the point P the stress vectors
and 3»: act on the respective surface
elements n;AS and n} AS*. Show that
the component of ﬁn. in the direction
of nt is equal to the component of
& in the direction of m.

1t is required to show that

A,
(n)
ty

n >
— ¢ind @
tn = 0

From (£.12) &:3:. = oynjm, snd by (2.22)
oy = o) 80 that

ol = (ogmn} = ti™ny Fig.2-20
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2.2.

24.

2.5.

The stress tensor values at a point P are given by the array

7 0-2
z = 0 5 0
-2 0 4

wgm!:m:m the traction (stress) vector on the plane at P whose unit normal is

8 = (2/8)8: — (2/8)8: + (1/3)8s

From (£.12), t™ =% <%, The multiplication is best carried out in the matrix form of (£.13):

7 0 -2
(@ @ ) = _ - |14_2 10 4 4
(£, £, ¢ 273, -2/3, 13} o 5 0 _Hu o k-
-2 0 4

"
Thus t™® = 48, — Y&,

For the traction vector of Problem 2.2, determine (a) the component perpendicular
to the plane, (b) the magnitude of t{*, (c) the angle between nnn. and .

@ -8 = (48, - 08 (38, —§5 + 48 = 4

(b) |t = VI + 1008 = 52

(c) Since t™ R = |¢{”|coss, cose = (44/9)/5.2 =094 and 6 =20°

The stress vectors acting on the three coordinate planes are given by £, an.v and £{&,
Show that the sum of the squares of the magnitudes of these vectors is independent
of the orientation of the coordinate planes.

Let S be the sum in guestion. Then
AL AL A S
— plengen (eg) g(en) (e3) p(e2)
S = tEt{er 4 gledgen) + pled e

which from (2.7) becomes S = oy0y; + o0 + 0303 = oo, an invariant.

The state of stress at a point is given by the stress tensor

¢ ao bo

where a, b, ¢ are constants and ¢ is some stress value. Determine the constants a,b
and ¢ so that the stress vector on the octahedral plane (& = (1/y/3)& + (1/V3)&: +
(1/1/3)&) vanishes.

A
(n) —

In matrix form, ¢{ = o;m; must be zero for the given stress tensor and normal vector.
¢ as bo |[1/V3 0 a+b = -1
a0 o co H\a\w =10 hence ae+c¢ = —1
bo co o w}\m 0 b+e = —1

Solving these equations, @ = b = ¢ = —1/2. Therefore the solution tensor is

¢ —o/2 —0o/2
oy = —o/2 o —a/2
—a/2 —o/2 o



