- 1. Prove that a hyperplane $[f = \alpha]$ in a normed space X is closed if and only if $f \in X'$.
- 2. Prove that a hyperplane $[f = \alpha]$ in a normed space X is dense if and only if $f \notin X'$. (*Hint*: First, let $\alpha = 0$. Then consider a sequence (x_n) such that $x_n \to 0$ and $|f(x_n)| \ge \epsilon$ for some $\epsilon > 0$. Now for any given $x \in X$, consider the sequence $z_n = x - (f(x)/f(x_n))x_n$.)