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Tentative solutions to TMA4240 Statistics, December 18, 2010

Problem 1 Hay fever and eczema

a) If E and H are independent events, then the probability that a child has eczema is equal
to the probability that the child has eczema given that we already know that the child
also has hay fever. Also, the probability that the child has both ezcema and hay fever
is the product of the marginal probability that the child has ezcema and the probability
that the child has hay fever.
E and H are not independent since; P (H) ·P (E) = 0.04 ·0.07 = 0.0028 which is different
from P (E ∩H) = 0.009.
Let E∗ be the complemenary event of E and H∗ the complementary event of H.

P (H∗|E∗) = P (E∗ ∩H∗)
P (E∗)

= 1− P (E ∪H)
1− P (E)

= 1− (P (H) + P (E)− P (H ∩ E))
1− P (E)

= 1− 0.04− 0.07 + 0.009
1− 0.04 = 0.899

0.96 = 0.936

Problem 2 Sale of newspapers

X is Poisson distributed with expected value E(X) = µ. This means that

P (X = x) = µx

x! exp(−µ)
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a) Known: µ = 10.
What is the probability that exactly 10 newspapers are sold:

P (X = 10) = 1010 · exp(−10)
10! = 0.125

What is the probability that 13 or more newspapers are sold:

P (X ≥ 13) = 1− P (X ≤ 12) = 1− 0.7916 = 0.21

found in the table on page 20 of “Formelsamlingen”.

b) X1, X2, . . . , Xn iid Poisson µ, where µ is unknown. Estimator for µ is X̄ = 1
n

∑n
i=1Xi.

E(X̄) = 1
n

n∑
i=1

E(Xi) = 1
n

n∑
i=1

µ = µ

Var(X̄) = 1
n2

n∑
i=1

Var(Xi) = 1
n2

n∑
i=1

µ = µ

n

Using the central limit theorem:

Z = X̄ − E(X̄)√
Var(X̄)

= X̄ − µ√
µ
n

≈ standard normal

since X̄ is the average of independent identically distributed random variables.
To construct a (1 − α)100% confidence interval we start with the α/2 quantile of the
standard normal distribution, zα/2:

P (−zα/2 < Z < zα/2) ≈ 1− α

P (−zα/2 <
X̄ − µ√

µ
n

< zα/2) ≈ 1− α

This inequality is difficult to solve wrt µ so we choose to approximate the µ in the
variance in the denominator with the estimator X̄, and then solve wrt µ.

P (−zα/2 <
X̄ − µ√

X̄
n

< zα/2) ≈ 1− α

P (X̄ − zα/2

√
X̄

n
< µ < X̄ + zα/2

√
X̄

n
) ≈ 1− α
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This interval covers the unknown µ with approximate probability 1− α when n is suffi-
ciently large. Here n = 30 and in addition the Poisson distribution is rather symmetric
for large µ, e.g. for µ = 10.
Numerically:

• z0.025 = 1.96
• n = 30
• x̄ = 1

30
∑30
i=1 xi = 10.75

µ ∈ [10.75± 1.96 ·
√

10.75
30 ] = [9.58, 11.92]

c) We have Y = min(X, a), where X is Poisson with µ. If y ≤ (a − 1) the newspaper is
not sold out, and P (Y = y) = P (X = y), but for y = a we could have had a sale of at
least a newspapers, that is P (Y = a) = ∑∞

x=a P (X = x) = 1 −∑a−1
x=0 P (X = x). Thus

the distribution function for Y is

P (Y = y) =
{
P (X = y) when y < a
1−∑a−1

x=0 P (X = x) when y = a

E(Y ) =
a∑
y=0

y · P (Y = y)

=
a−1∑
y=0

yP (X = y) + a · P (Y = a)

=
a−1∑
y=0

yP (X = y) + a · (1−
a−1∑
x=0

P (X = x))

= a+
a−1∑
y=0

yP (X = y)− a
a−1∑
x=0

P (X = x))

= a−
a−1∑
y=0

(a− y)P (X = y)

Cost of buying the newspaper for the kiosk: 5a.
Income from sale and return: 12Y + 3(a− Y ).
Total earnings: income-cost=12Y + 3(a− Y )− 5a = 9Y − 2a
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Now to the expected total earnings, h(a).

h(a) = E(9Y − 2a)

= 9[a−
a−1∑
y=0

(a− y)P (X = y)]− 2a

= 7a− 9
a−1∑
y=0

(a− y)P (X = y)

This is a function of a, where a is discrete and can take values 0, 1, ldots. We would like
to find the value of a maximizing h(a). Since a is not continuous we can not differensiate
h(a) wrt. a, but instead we look at differences between h(a) and h(a−1). If this difference
is positive, then h(a) is larger than h(a− 1), while when the difference is negative then
h(a− 1) is larger than h(a).

h(a)− h(a− 1) = 7a− 9
a−1∑
y=0

(a− y)P (X = y)− 7(a− 1)− 9
a−2∑
y=0

(a− 1− y)P (X = y)

= 7a− 7a+ 7− 9
a−1∑
y=0

(a− y)P (X = y) + 9
a−2∑
y=0

(a− 1− y)P (X = y)

= 7− 9 [aP (X = 0) + (a− 1)P (X = 1) + · · ·
+(a− a+ 2)P (X = a− 2) + (a− a+ 1)P (X = a− 1)]
+9 [(a− 1)P (X = 0) + (a− 2)P (X = 1) + · · ·
+(a− 1− a+ 2)P (X = a− 2)]

= 7− 9 [(a− a+ 1)P (X = 0) + (a− 1− a+ 2)P (X = 1) + · · ·
+(a− a+ 2− a+ 1 + a− 2)P (X = a− 2) + (a− a+ 1)P (X = a− 1)]

= 7− 9
a−1∑
y=0

P (X = y) = 7− 9P (X ≤ (a− 1))

We see that this difference is a function of the cumulative Poisson distribution, which is
increasing and monotone. When is h(a)− h(a− 1) ≥ 0?

h(a)− h(a− 1) ≥ 0
7− 9P (X ≤ (a− 1)) ≥ 0

P (X ≤ (a− 1)) ≤ 7
9 = 0.778

Consulting the Poisson cumulative tables on page 20 of “Formelsamlingen”, we see that
with µ = 10 then P (X ≤ 11) = 0.6968 and P (X ≤ 12) = 0.7916. This means that the
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largest a for which P (X ≤ (a − 1)) ≤ 0.778 is a − 1 = 11, giving a = 12 as the value
with maximum expected total earnings.
Additional checks (numerical values):

h(13)− h(12) = −0.12
h(12)− h(11) = 0.73
h(11)− h(10) = 1.75

so, yes, the maximum must be at a = 12.
Additional figure of h(a) that would not be possible to draw when sitting for the exam
- but might provide additional insight for the reader.

Problem 3 Covariance

Random variable X has E(X) = 10 and Var(X) = 4, while random variable Y has E(Y ) = 8
and Var(Y ) = 9. In addition X and Y are dependent variables with covariance Cov(X, Y ) = 5.

a)

E(2X − Y ) = 2 · E(X)− E(Y ) = 2 · 10− 8 = 12
Var(2X − Y ) = 22 · Var(X) + (−1)2Var(Y ) + 2 · 2 · (−1)Cov(X, Y )

= 4 · Var(X) + Var(Y )− 4 · Cov(X, Y ) = 4 · 4 + 9− 4 · 5 = 5
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Where we have used the formula

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X, Y )

We observe that Cov(X, Y ) = E(XY ) − E(X) · E(Y ), so that E(XY ) = Cov(X, Y ) +
E(X) · E(Y ) = 5 + 10 · 8 = 85, which we need now:

E ((X − 3)(Y − 5)) = E (XY − 3Y − 5X + 15) = E(XY )− 3E(Y )− 5E(X) + 15
= 85− 3 · 8− 5 · 10 + 15 = 85− 24− 50 + 15 = 26

Problem 4 The experimental farm

a) Biomass, Y , is normally distributed (Gaussian) with E(Y ) = 5 and Var(Y ) = 4. Calcu-
late probabilites:

P (Y > 6) = 1− P (Y ≤ 6) = 1− P (Y − 5
2 ≤ 6− 5

2 ) = 1− Φ(0.5)
= 1− 0.6915 = 0.31

P (4 < Y ≤ 6) = P (Y ≤ 6)− P (Y ≤ 4) = P (Y − 5
2 ≤ 6− 5

2 )− P (Y − 5
2 ≤ 4− 5

2 )

= Φ(0.5)− Φ(−0.5) = 0.6915− 0.3085 = 0.38

P (Y > 6 | Y > 4) = P (Y > 6 ∩ Y > 4)
P (Y > 4) = P (Y > 6)

P (Y > 4)

= 1− Φ(0.5)
1− Φ(−0.5) = 1− 0.6915

1− 0.3085 = 0.3085
0.6915 = 0.45

b) Linear regression of biomass Y as a linear function of cultivation period (without inter-
cept), but with variance dependent on cultivation period, x.

Y = βx+ ε(x) for x > 0,

where ε(x) is normally distributed (Gaussian) E(ε) = 0 and Var(ε) = τ 2x2.
Measurements for n = 5 plants at cultivation periods x1, x2, . . . , x5 with biomass Y1, Y2, . . . , Y5.
Distribution of Yi given xi:
Since εi is normally distributed, given xi and β is a constant parameter, then Yi is a
linear function of εi, and Yi is thus also normally distributed.

E(Yi) = E(βxi + εi) = βxi + E(εi) = βxi

Var(Yi) = Var(βxi + εi) = 0 + Var(εi) = τ 2x2
i
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We choose to derive the maximum likelihood estimators for β og τ 2. Alternatively, the
least squares estimator for β might be derived, but since the variances differ between
the εs then a weighting factor 1

τ2x2
i
should be used when minimizing the sum of squared

errors, SSE = ∑n
i=1 ε̂

2
i = ∑n

i=1
1

τ2x2
i
(yi − ŷi)2. This is called weighted least squares and

is not on the reading list of this course. Using the least squares without this weighting,
will give partial credit.

L(β, τ 2, y1, y2, ..., yn) =
n∏
i=1

1√
2π

1
τxi

exp(− 1
2τ 2x2

i

(yi − βxi)2)

lnL(β, τ 2, y1, y2, ..., yn) = −n2 ln2π − n

2 lnτ 2 −
n∑
i=1

lnxi −
1

2τ 2

2∑
i=1

(
yi − βxi

xi

)2

∂lnL(β, τ 2, y1, y2, ..., yn)
∂β

= − 1
2τ 2

n∑
i=1

2
(
yi − βxi

xi

)
· (−1)

= 1
τ 2

[
n∑
i=1

yi
xi
− nβ

]
= 0

β = 1
n

n∑
i=1

yi
xi

This gives the following estimator, B, for β.

B = 1
n

n∑
i=1

Yi
xi

We then continue with the estimator for τ 2.

∂lnL(β, τ 2, y1, y2, ..., yn)
∂τ 2 = − n

2τ 2 −
1
2

n∑
i=1

(
yi − βxi

xi

)2

· (− 1
τ 4 )

= − n

2τ 4

τ 2 − 1
n

n∑
i=1

(
yi − βxi

xi

)2
 = 0

τ 2 = 1
n

n∑
i=1

(
yi − βxi

xi

)2

Inserting the estimator, B, for β, this yields the estimator τ̂ 2 for τ 2.

τ̂ 2 = 1
n

n∑
i=1

(
Yi −Bxi

xi

)2
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Numerical results using n = 5, ∑5
i=1

yi
xi

= 2.61 and ∑5
i=1

y2
i

x2
i

= 1.59.

b = 2.61
5 = 0.52

τ̂ 2 = 1
5(

5∑
i=1

y2
i

x2
i

− 2 · b
5∑
i=1

yi
xi

+ 5b2) = (1.58− 2 · 0.52 · 2.61 + 5 · 0.522)/5 = 0.046

c) Here we use the estimator

B = 1
n

n∑
i=1

Yi
xi

and assume τ 2 = 0.04 is known.
For the hypotheses

H0 : β = 0.50 vs. H1 : β > 0.50
we would reject H0 when B > k, where k can be found from

P (Reject H0 | H0 true) ≤ 0.05

To do this we need the distribution of B. Since B is a linear combination of Yis (the xis
are constants), and the independent Yis are normally distributed, then B is also normally
distributed with

E(B) = 1
n

n∑
i=1

1
xi

E(Yi) = 1
n

n∑
i=1

1
xi

(βxi) = β

Var(B) = 1
n2

n∑
i=1

( 1
xi

)2Var(Yi) = 1
n2

n∑
i=1

( 1
xi

)2(τ 2x2
i ) = τ 2

n

Back to rejection rule:

P (B > k | β0 = 0.50) ≤ 0.05

P (B − β0√
τ2

n

>
k − β0√

τ2

n

| β0 = 0.50) ≤ 0.05

In the standard normal distribution the value zα has area α to the right (greater than),
and thus k−β0√

τ2
n

= zα. Solving for k gives k = β0 + zα
√

τ2

n
(where β0 = 0.50). This means

that the rejection rule is:
Reject H0 when B > β0 + zα

√
τ2

n
.

Using the numerical values in the example we have
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• β0 = 0.5
• z0.05 = 1.645
• n = 5
• τ√

n
= 0.089

• β0 + zα
√

τ2

n
= 0.5 + 1.645 · 0.089 = 0.647

• B = 0.52

Since B = 0.52 < 0.647 we do not reject H0. What we have observered is not in
contradiction to H0 being true.
Additional: p-value (not asked for):

P (B ≥ 0.52 | β0 = 0.5) = P (B − β0√
τ2

n

≥ 0.52− 0.5√
0.04

5

| β0 = 0.5)

= P (Z ≥ 0.22) = 1− Φ(0.22) = 1− 0.5871 = 0.41

The power of the test is the probability of rejecting H0 at a given value under H1, here
at β = 0.7.

Power = P (Reject H0 | true value is β = 0.7)

= P (B > k | β = 0.7) = P (B > β0 + zα

√
τ 2

n
| β = 0.7)

= P (B − β√
τ2

n

>
β0 − β√

τ2

n

+ zα | β = 0.7)

= P (Z >
β0 − β√

τ2

n

+ zα | β = 0.7)

= 1− Φ(β0 − β√
τ2

n

+ zα)

With β = 0.7 and n = 5:

Power = 1− Φ(−2.236 + 1.645) = 1− Φ(−0.59) = 1− 0.2776 = 0.72

For n = 5 the power at β = 0.7 is 0.72. This means that with our test with n = 5
observations the probability of rejecting H0 when the true β = 0.7 is 0.72.


