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ABSTRACT

A brief introduction to geostatistical modeling, estimation and simu-
lation is given. The main characteristics of these parts of geosta-
tistics are emphasized. Application of the methods to mining and
petroleum exploration is discussed.

I. INTRODUCTION

Geostatisticians are mainly conserned with solving practical problems
arising in the analysis of spatially correlated variables. Examples
of variables are oregrade, depth to geological horizon or airpollution.
Dr. G. Matheron, a french mining engineer and mathematician, formal-
ized the geostatistical theory in the early nineteen sixties, see
Matheron (1965). His primary aim was to understand and solve problems
in the mining industry. The geostatistical theory is based on a
stochastic process consept and it is closely connected to the theory
of random functions, see Yaglom (1962). Matern (1960) also seems to
have inspired Dr. G. Matheron in his work. The field of geostatistics
has hardly added anything fundamentally new to the disiplin of proba-
bility theory and statistics. Its great contribution, however, is
that the general theory has been refrased in order to fit real life
problems. 1In time series, a field closely related to geostatistics,
Box and Jenkins (1970) similarly refrased the general theory for prac-
tical needs.

In geostatistics the variable under study is named the regionalized
variable, {z(x);xeV}. Note that it actually takes deterministic
values in every point in the reference domain. The reference variable,
x, usually is a vector in two or three dimensions. This regionalized
variable is considered as one realization of a random function
{Z(x);xeV}. Normally this regionalized variable is known only in a
finite number of points, x,, i=1,N. The set of observations is

s: {z(x,);x,eV;i=1,N}. The corresponding set of random variables is

S: {Z(x;);x;ev;i=l,N}.
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The main objective of geostatistics is to determine the regionalized
variable {z(x);xeV} from the set of observations, s, and available
apriori knowledge about the characteristics of the phenomenum under
study.

Several aspects of a geostatistical analysis may be unfamiliar to
statisticians:

. the objective is to estimate the regionalized variable, hence a
realization of the random function. The parameters in the under-—
lying model have no interest in themselves, and should only be
estimated if absolutely necessary.

. regionalized variables from the field of earth sciences tend to
have skewed and heavy tailed distribution of values. Hence the
well established multi-normal theory has limited applications.

. the available set of observations represents only an extremely
small part of the domain about which inference is to be made.
The high expences for collecting data usually causes this.

. the observations are not independent, they are spatially corre-—
lated. This prohibits the use of most traditional statistical
methods. The spatial correlation, however, is necessary if
spatial interpolation is to be made.

« in several applications in the field of earth sciences there is a
tendency to perform biased sampling. The preferential sampling in
either high-value or low—-value areas causes problems in the later
analysis.

. normally the observations cannot be made exactly at the points,
x,; i=1,N, but have to be averages of volums centered at each of
these points. The size of these volumes is denoted the support
size. The variability of the observations is dependent on the
phenomenum under study as well as the support size. The obser-
vations in this presentation are assumed to have approximately
point support size.

Basic introductions to geostatistical theory and applications can be
found in the papers, Huiljbregts (1975) and Delfiner and Delhomme
(1975) and the books, David (1977) and Clark (1979). Thorough theore-
tical discussions of the theory are presented in Matheron (1965),
Journel and Huijbregts (1978) and Journel (1983).

This paper is divided in two main parts - Geostatistical Methods and
- Geostatistical Applications, at the end some — Closing Remarks are
added.




II. GEOSTATISTICAL METHODS

A geostatistical analysis may be divided into three parts: modeling,
estimation and simulation. The modeling has to take place before
either estimation or simulation can be performed.

IT.1 Geostatistical Modeling

There exists only one realization, the regionalized variable
{z(x);xeV}, of the random function {Z(x);xeV}. This obviously con-

strains the level of modeling possible. In order to get repeatability,

assumptions of spatial stationarity in the random function have to be
made. Usually intrinsic stationarity is assumed, this implies:

E{Z(x)} =m ; all xeV
E{(Z(x)-Z(x+))?} = 20 y(h) ; all xeV

Hence both the expected value and the second moment of the increments
are location independent. The y(h) is called the semi-variogram in
the geostatistical terminology. In this paper it will be abbreviated
to the variogram. In figure 1 the shape of a typical variogram func-
tion is presented. Under the somewhat more restrictive second-order
stationarity assumption one has:

y(h) = C(0) - c(h)

where

C(h) cov{Z(x),Z2(x+h)} ; all xeV

n

Figure l. A schematic variogram function
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Some properties of the variogram function in figure 1 have important
physical interpretations:

« Y(0) = 0 implies that the regionalized variable is unique; once
it is observed in a location the truth is known.

. the value of y = 1im y(h); h » 0, is called the nugget effect
and it reflects the degree of discontinuity in the regionalized
variable.

. the distance h_ is called the range and determines the zone of
spatial correlation in the regionalized variable. Note that
cov{Z(x),Z(x+h)} = 0 for all h > ho.

. the value of y_ = lim y(h); h » <, is called the sill and reflects
the variability in the regionalized variable. Note that
Var{z(x)} = Y,

. the shape of the variogram function close to the orgin indicates
the regularity of the regionalized variable. A parabolic shape
characterizes a more smooth variable than a linear shape.

In figure 2 various examples of variogram functions and physical
interpretation of them are presented. As can be seen, a large variety
of physical characteristics can be modeled by the variogram function.
Statistical theory requires the variogram functions to be conditional
positive definite, which corresponds to having the covariance function
positive definite in the case of second-order stationarity.

Unfortunately the variogram functions of phenomena are not apriori
known, but have to be estimated. Both observations of the regionalized
variable and prior knowledge of its general characteristics are used

in this process. The traditional estimator of the variogram function
at distance h', based on the observations, is:

. 1 2
Yh') = S X (Z(x,)—Z(X.)J
@ ger,

where

. S JR)
Ph" {(1,3)]Z(xi),2(xj)es and Xidxj h'}

N is the number of elements in P

h' h'

The prior knowledge is introduced through the choice of shape of the
variogram function. The final estimate of the variogram function
should be verified by confirming the physical interpretations of the
properties previously discussed.
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Pure nugget effect.

There is no spatial correlation,
observations from all locations
will be uncorrelated. In this
case the geostatistical theory
will be identical to ordinary
statistics on iid observations,
and the consept of spatial
interpolation hardly has any
meaning.

¥(n) >

s
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Hole effect. The phenomenum
has a periodic component.
Examples are sediments on a
coastline.

?
n
Linear model. The phenomenum
is intrinsic stationary, but
not second order stationary.

Actually, the variability in
the variable is infinity.

.4
;\i
g
4]
B. Parabolic shape close to
the orgin. The pheno-
menum is relatively smooth.
Examples are depth to
groundwater, thickness of
coal layer.
) 4+

Anisotrophy. The corre-

lation structure and the

variability are direction
dependent. Examples are

mineral deposits in areas
with tectonic activity.

Figure 2.

Characteristic variogram
functions.
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So far the point variable {z(x);xeV} has been discussed. Consider the
spatial integral:

1
Z (X) -;-(‘;{“3‘ f Z(u) du
v{x)
where
v(x) 1is a volume centered at x .
Ignore the bordereffects and define s : {zv(x);er} and correspondingly

Sv: {Zv(x); xeV}. Define the dispersion variance as

D2 (v]v) =

<| =

[ Bz ()-2,) Yy = TV, V)", v)
\

where

1
Zy =5 ‘[I Z(u)du

Y(w,w) =;]1"2 [ Y(u=u')du du' .
ww

The dispersion variance defines the variability of the average values
of volumes of size v within the domain V It can be shown, and it
makes intuitively sense, that normally D (VI'V) <D (v2|V) if v, > Ve

After having justified the stationarity assumptions, the only modeling

taking place is the determination of the variogram function. No para-

metric assumptions are made. The modeling, however, is quite extensive
since the variogram function carries information about the continuity,

the zone of correlation, eventual periodicity and eventual anisotrophy

in the regionalized variable.

I1.2 Geostatistical Estimation

Various methods for geostatistical estimation are discussed in the
literature, see Journel and Hui jbregts (1978), Matheron (1976),

Verly (1982) and Journel (1981). 1In this section only linear estima-—
tors will be presented. The ordinary kriging estimator is discussed
in some detail, while an outline of the associated techniques, univer-
sal kriging, cokriging and block kriging, is given.

The general problem is to estimate z(xo), where x is an arbitrary
location in V, from the observations {z(x,);i=1,N}. The estimated
regionalized variable {z*(x);xeV} will get the following properties:

. it is the best linear unbiased estimate in the least square sense,
when the variogram of the regionalized variable is known.

« it coinsides with the true regionalized variable in the observa-
tion locations, i.e. z*(xi)zz(xi); i=1,N.




« 1ts variogram function will not be identical to the variogram
function of the true regionalized variable. The former shows
less variability and more smoothness than the latter.

In figure 3 an example of these properties is presented.

Figure 3. True, simulated and estimated profiles.

» Reality; , Geostatistical
simulation; =——---- , Kriging; o, Observations.
(From Journel and Huijbregts (1978))

Ordinary Kriging.

This estimator is constructed for regionalized variables which fluc-—
tuates around an approximately constant level. The hypothesis of
intrinsic stationarity reflects this. The form of the ordinary
kriging estimator is:

% N
Z (Xo) = iZlai-z(xi)

where

ai; i=1,N are unknown weights to be determined.

Under the specified stationarity assumption, the expected value of the
estimator is:

N N

E{Z*(xo)} = -Z ai-E{Z(xi)} =me ) a

i=1 i=1 L



Since E{Z(x)} = m; all xeV, unbiasedness obviously requires

N

E a, =1
i=1*

The optimal set of weights is determined by minimizing the estimation
variance under the unbiasedness constraints:

Min {EL(z(x )-2*(x )1}
a,;i=1,N
. N N N
= Min {27 o ov(x =x.) =) Y oo ca.ev(x,~x.)}
o 3i=l,N  i=1 0 % b gmp gmpt I )
N
Yoa, =1
i=1 *

This is a system of constrained minimization with a quadratic object
function and linear equational constraints. The standard Lagrangean
technique will provide a solution to this. The solution will be
dependent on the variogram function, y(h). By inserting the estimated
yariogram function from the modeling stage, an optimal set of weights,
a,; i=1,N, will be obtained. From this the estimate and the corre-
sponding estimation variance can be obtained:

N _~
* - L]
z (xo) .E a, z(xi)
i=1
2 N N N
op(%,) = 272 o v(x,7x,) *_Z .z g ray eyl =x,)
i=1 i=1 j=1

The estimator and estimation variance are dependent on:

» the spatial characteristics of the regionalized variable through
its variogram function

« the distance between the location X and the location of the
observations

« the location of the observations relative to each other

Note that the set of weights will change if the variable in another
location shall be estimated.




Universal Kriging.

This estimator is constructed for the case with an obvious trend in
the regionalized variable. The underlying assumptions are:

L
E{z(x)} = § g £, (x) ; all xeV
k=1

B{(2(x) - B{2GO} - 2Goth) + E{2GeH)})?) = o (h) 5 all xev

where
L is a fixed number of terms
fk(x); k=1,L are known functions of location x
Ek; k=1,L are unknown coefficients.

Note that only the form of the trend has to be known, sinc
ficients are unknown. An example is E{Z(x)} = €o+€1x+£2x

The form of the universal kriging estimator is

*
Z (xo) = ai-Z(xi)

1

o~

i

where
ass i=1,N are unknown weights to be determined.

The expected value of the estimator is

3

1

N N L L
E{Z*(xo)} =.2 ai-E{Z(xi)} =‘z ay ) Ek-fk(xi) =7
i=1 i=1 "k=1 k=1
Hence unbiasedness requires:
N
Z a of, () = £, (x ) ;5 k=1L

1

the coef-

&

i

)

N

1ai'fk(xi)



Minimizing the estimation variance under the unbiasedness constraints
gives:

Min [E{(z(x )-z*(x ))2}}
. o o
o, ;i=1,N
i
N N N
= Min {2¢) ooy, (x =x.) =) J a ca.oy(x.—x.)}
a31=1,N 1=t R0 3% 4oy 321 23 RTETS
N
iZlai~fk(xi) = fk(xo) ; k= 1,L

The standard Lagrangean technique will provide a solution to this
minimization system. The set of weights, can be determined when an
estimate of the variogram function of the residuals, ¥y, (h), is esti-
mated. It should be added that this is not trivial because the
variogram function and the trend has to be estimated simultaneously.

When the weights are obtained, the estimate of z(xo) and the corre-
sponding estimation variance can be determined.

Cokriging.

This estimator is used in the multivariate case, i.e. more regionalized
variables are defined over the domain V. The bivariate case will be
discussed. Define in addition to {z(x); xeV} the regionalized variable
{y(x); %xeV}. Let the notational convention for the latter correspond
to the one of the former. Introduce an index y if ambiguities occur.
Assume that the corresponding random functions are both intrinsic sta-
tionary. Define the cross—variogram between the two regionalized
variables as:

E{(Z(x)-Z(x+h))(Y(x)-Y(x+h))} = yéy(h) ; all xeV

The estimation of the cross-variograms are done equivalently to the
estimation of the variograms. Several constraints have to be put on
the system of variogram functions to ensure conditional positive defi-
nitness.

The cokriging estimator for Z(Xo) has the form:

N N

Z*(xo) = iElai.z(xi) +i£18i.Y(xi)

where

ai,Bi; i=1,N are unknown weights to be determined.

An equivalent estimator for y(xo) can of course be defined.
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The expected value of the estimator is:

N N N

N
E{Z*(XO)} = iZlai-E{Z(xi)} + lei-E{Y(xi)} = mi£1a1+ my-iz B,

1

Unbiasedness requires, since E{Z(x)} = m; all xeV:

Minimizing the estimation variance under the unbiasedness constraints
gives:

2
Min {E{(z(x )-z*(x ))"}}
. o )
o,;i=1,N
B.;i=1,N
N N
= Min {2-2 a,*y(x -x.) + 2-X B.oy (x =x.)
o ;i=l,N i=1 5 % 7 j=1 1 &y o i
Bi;i=1,N
N N N N
-3 ) ayeaey(x,mx,) - 2+Y Y a.B.ey (x.=x.)
i=1 j=1 % J 13 i21 j=1 ¢ 3 Ay LT
N N

=) ) B.eB.ev (x,7x.)}

i=1 j=1 - 3 ¥+ J
N
X ai =1
i=1
N
18 =0
j=1 7"

The standard Lagrangean technique will provide a solution to this
minimization system. The sets of weights, can be determined when




estimates of the variogram functions are available. The theory can
easily be extended to the multivariate case.

When the weights are obtained, the estimate of z(x ) and the
corresponding estimation variance can be determined.
Block Kriging.

This estimator is constructed for estimating spatial averages of the
regionalized variable. The variable under study is:

zv(xo) = ;?i—3~ f z(u)du
o

vix )
o
where v(xo) is a volume centered in location xo.
The corresponding random variable is ZV(XO)-
The estimator may be defined for any of the kriging variants pre-
viously discussed. For notational convenience the presentation is

made for the ordinary kriging case. Assume intrinsic stationarity and
define the estimator form as:

N
* = .
2E(x ) = ) o eZ(x))
i=1
where ai; i=1,N are unknown weights to be determined.

The expected value of the estimator is
N N
7% = e = ®
E{z*(x )} .Zl“i E{Z(x)} = me] o,

i i=1

Obviously, unbiasedness requires:
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Minimizing the estimation variance under the unbiasedness constraints
gives:

. 2
Ml?.zl N{E{(ZV(X0>—23(XO)) 1
aial 5
1o, 1)
= Min {2¢) a,ey(v(x ),x,) - a,c0,v(x,=x.) - Y(v(x ),v(x ))}
o 3i=1,N i=1 RO 15 B 5 B B © °
N
Z a, =1
i=1 *
where .?(v(xo),x) = ;?iﬁjv f Y(u=x)du
o vix )
0
_‘?CV(XO),V(XO)) Sp—— / [ y(u-u')dudu’

v(xo) v(xo) v(xo)

The standard Lagrangean lechnique will provide a solution to this
minimization system. The set of weights can be obtained when an esti-
mate of the variogram function is available.

When the weights are obtained, the estimate of =z (xo) and the corre-
sponding estimation variance can be determined.

I1.3 Geostatistical Simulation

The procedure for geostatistical simulation or conditional simulation,
is presented in Journel and Huijbregts (1978). 1In this section only
an outline of the procedure will be given.

Geostatistical simulation was introduced as an alternative to estima-
tion. The objective was to avoid the smoothing tendency in geosta-
tistical estimation. The simulated regionalized variable {z_(x); xeV}
resulting from the geostatistical simulation gets the following
properties:

« it has the same distribution of values and the same variogram
function as the true regionalized variable.

. it coinsides with the true regionalized variable in the observation
locations, i.e. ZS(Xi) = z(xi); i=1,N .

. it is not unique, since infinitely many regionalized variables
have the properties listed above.

In figure 3 an example is presented.
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Assume that the random function is strictly stationary to the first
order. This implies that the univariate distribution of Z(x) is equal
for all xeV. The procedure of geostatistical simulation can be out-
lined as follows:

. transform the observations {z(x,); i=1,N} univariately so that
the resulting set {ZT<X1); i=1,&} reflects a standard normal
distribution.

+ estimate the variogram function, YT(h), of the transformed
regionalized variable.

. simulate a regionalized variable {z.,(x); xeV} with normal dis-
tribution of values and variogram function YT(h)'

. to ensure that the simulated regionalized variable passes through
the observations define the transformed simulated regionalized
variable as

-k %k .
lzgp(x) = 27(x) + [z (x)-25 (x)] ; xeV}
where
z;(x) is the kriging estimate in location x based on
{zT(xi); i=1,N}

Z3N(x) is the kriging estimate in location x based on
(g (x;)5 1=1,N}

. obtain {zs(x); xeV} by an univariate backtransform of {zST(x); xeV}
according to step one.

A theory for geostatistical simulation for the multivariate case is
also available.

In geostatistical simulation emphasis is put.on reproducing the spa-
tial characteristics of the phenomenum, no effort is made to minimize
the estimation variance. It can be shown that the estimation variance
in an arbitrary location is twice the one obtained by ordinary kriging.
The expected value of the simulations is identical to the ordinary
kriging estimate.

ITI. GEOSTATISTICAL APPLICATIONS

The geostatistical methods can be applied in analysis of all kinds of
spatial variables. Examples of fields of applications are: mining,
petroleum exploration, forestry, soil science, meteorology, sivil
engineering, hydrographic mapping and pollution studies. The main
characteristics of the application to mining and petroleum exploration
will be discussed.

|
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ITII.1 Application to Mining.

In mining the in situ resource in the deposit and the recoverable
mineral reserve are of great interest. The ore-grade is usually
directly observed through laboratory analysis of small rock samples
from drillholes. The number of observations is often large and the
observations are reasonably homogeneously located over the deposit.

The geostatistical modeling is sometimes complicated by skewed and
heavytailed distributions of grades in the deposit. Extreme examples
are uranium and gold deposits. When an estimate of the variogram is
established geostatistical techniques for estimating the in situ
resource are available. An estimate of the corresponding estimation
variance can also be provided.

The recoverable reserve is dependent on both the mining method and

the economical conditions. Selective mining is often used either for
financial or technical reasons. Selective mining implies that only
ore above a certain cut-off is taken to the mill while the remaining
is taken to waste. There are obvious problems connected to predicting
the amount of ore that will be recovered and the location of the areas
that should be recovered. An additional problem is that the selection
is not made on the grade of units of the size of the observations, but
on the average grade of larger panels. The panel size may correspond
to one truck load, which either is taken to the mill or to waste.

The dispersion variance concept explains why the dispersion variance
of grades in the observations will be larger than the dispersion
variance of average grades in the panels. An example is presented in
figure,4A and B. If perfect selection was made on panelsize (20 x 20
x 13)m™, at cut-off equal 3% for example, the true average recovered
grade can be computed from the truncated distribution to the right of
the 3%-mark in figure 4B. If the unit size on which selection is
going to be made is ignored, and the average recovered grade is com-
puted from figure 4A, overestimation will take place. The mean of the
truncated distribution at the 3%-mark obviously is larger in figure 4A
than in figure 4B.

Unfortunately perfect selection cannot be made since knowledge of the
true panelaverages, z s are not available when the selection takes
place. The selection has to be made on estimated averages. Block
kriging can provide these, z*. The bivariate properties of (Z ,2¥)
will determine the efficienc§ in this selection process. In figure 5
this property is presented. If selection is made at cut—off z of the
estimated panel averages, the proportion under the heavily hatehed
area in figure 5 will be correctly selected. The proportion under the
hatched area below this will be wrongly selected while the proportion
under the hatched area to the left will wrongly not be selected. To
estimate the expected amount of recovered ore unbiasedly for all cut-
off values, the conditional expectation has to be E{ZVIZ*=Z} =z

for all z. v

Geostatistical analysis is the only approach which adresses these pre-
diction problems. The practical consequences of thoroughly understand-
ing this are great, both technically and economically. Geostatistical
methods are extensively applied by the mining industry. Journel and
Huijbregts (1978) discussed this application in much greater detail.
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Figure 4. The distribution of grades in a copper deposit.

A. The dispersion of observations gith approximately
point support; m = 2.12% Cu; s° = .94 (%Cu)”.
A log-normal distribution is fitted to the
observations.

B. The dispersion Qf volumes ofzsize (20x20x13)m3;
m = 2.16% Cu; s = .35 (%Cu)“. A log normal
‘ distribution is fitted to the data.

| ) The deviation in the estimates of the mean is due to
border effects.

(From Journel and Hui jbregts (1978))

70

D2{v/G)}”

(@)

1
|
| “0t%(,/6)
[
|
!
|
:

Figure 5. Bivariate distribution of the true and estimated average
grades of volume v, Z and Z:.
(From Journel and Huigbregts (1978))



ITT.2 Application to Petroleum Exploration

In petroleum exploration it is of great importance to establish a
reliable spatial model of the reservoir and its relevant charac-—
teristics, in order to estimate the o0il and gas in place and the
recoverable reserves. This includes estimation of the depth to actual
geologic horizons in all positions within the area of interest, and
the value of the petrophysical variables in all points in the reser-—
voir. Relevant petrophysical variables are porosity, watersaturation,
permeability.

Several of these geophysical and petrophysical variables can only be
indirectly observed. Seismic methods and well-logging are important
indirect measurement methods. Often these indirect observations
actually reflect a composite of the petrophysical variables. Other
variables may be directly observed in the wells itself or through core
samples. The observations are obtained from either wells or seismic
surveys, which implies that there are fairly precise observations in
point locations and unprecise geophysical data on a relatively dense
net of profiles. The qualitative geological knowledge also is of
great importance, particularly in the determination of the geophysical
characteristics of the reservoir.

The construction of a spatial model of the reservoir and its charac—
teristics, obviously implies multivariate spatial interpolation from
observations on various levels of precision. This fits into the fra-
mework of cokriging. Aspects of the qualitative geological knowledge
can be incorporated in the geostatistical modeling process. The fact
that observations of some of the petrophysical variables can be sparse
may complicate the estimation of the variograms. When the spatial
model, with corresponding estimation variances, is established, oil
and gas in place can be estimated by simple integration. The spatial
model also can be used as input to reservoir simulation programs in
order to determine the recoverable reserves.

The kriging procedure provides a spatial model of the reservoir and
its relevant characteristics which is optimal in the least square
sence. Hence the spatial characteristics are not kept. An alter-
native approach could include geostatistical simulation. Several

sets of spatial models of the reservoir and its characteristics can be
simulated. For each simulation, oil and gas in place can be computed
and a probability distribution of these two variables can be obtained.
It is also possible to take each of these simulations through the
reservolr simulation to obtain the distribution of the estimates of
recoverable reserves. This, however, would require large computer
resources.

Delfiner and Chiles (1979) presents a study of this type. They simu-
lated the depth to the top geologic horizon of a reservoir thirty
times. Four of the resulting outcomes are presented in figure 6A.
Given the porosity and the watersaturation in the reservoir the oil in
place was computed for various levels of oil/water contact for each
simulation. The distribution of the estimates of the oil in place for
two contact levels are presented in figure 6B.
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A. Four representative outcomes of the simulation of the top

geologic horizon.

Baselevel is 640 m, sections of depth 20 m are inter-

chang%bgy hatched and non-hatched.

in 10 m .
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106m3 , .
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Figure 6.
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B. The distribution of estimates of oil in place.

Rock and oil volume

~ Prob{reserves> x)

4 16 18 20 x

Two

possible oil/water contactlevels are considered.

Results from geostatistical simulation.

[From Delfiner and Chiles (1979))
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Geostatistical methods have to some extent been used by the petroleum
industry. Since geostatistics is the only alternative if spatial
multivariate data shall be analysed the methods should have a large
potensial in this area of application. The petroleum industry could
probably also obtain more reliable estimates for their variables of
interest if more effort was put into analysing their data more
cautiously. The fact that the expences associated with collecting
additional information is huge, should further encourage the use of
geostatistical methods. References in this field of application are
Haas and Jousselin (1976) and Delfiner and Chiles (1979).

IV. CLOSING REMARKS

There exist alternatives to geostatistics. First, deterministic pro-
cedures for spatial interpolation. These provide an estimate of the
regionalized variable. They stop short of presenting any precision
measure of the estimate; any treatment of multivariate aspects or any
thorough discussion of the phenomenum, because no statistical modeling
takes place. Second, ordinary statistical methods can handle multi-
variate aspects. Normally, the spatial correlation in the observa-
tions is ignored, hence the most characteristic property of the
phenomenum is left out. This leaves geostatistics as the most power-
ful method when analysing spatial variables.

Geostatistics is an applied branch of statistics. Emphasis is put on
solving problems occuring in practical work. In recent years, prac-
tical problems have increased in complexity and marginal solutions to
them are required. These facts have merged theory and practice. In
the field of earth sciences, geostatistics offers a set of theoreti-
cally justified procedures for solving problems of large practical
importance.
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