
TMA4265 Stochastic Processes Page 1 of 9

Problem 1

Consider the Markov chain whose transition probability matrix is given by











0 1 2 3

0 1 0 0 0
1 0.2 0.3 0.4 0.1
2 0.1 0.2 0.4 0.3
3 0 0 0 1











a) • Draw a state transition diagram and determine the equivalence classes.

Solution: The state diagram is:
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0.2
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1

The state 0 does not communicate with any other state and hence forms
one equivalence class. States 1 and 2 communicate and build a second
equivalence class, and state 3 forms a third equivalence class as it does
not communicate with any other state.

Thus, there are 3 equivalence classes: {0}, {1, 2}, {3}.

• Which states are recurrent and which states are transient? Justify your
answer.

Solution:

Recurrence and transiency are class properties, so we will derive the
properties on class level. Class {0} is recurrent, since the probability
starting in 0 to re-enter state 0 is one. The same is true for {3}, which
means that it is also recurrent. However, class {1, 2} is transient, since
it is not possible to re-enter the class once it is left.
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• Calculate the following probabilities:

P (X4 = 3 | X3 = 1, X2 = 2) and P (X2 = 3 | X0 = 1)

Solution:

We have

P (X4 = 3 | X3 = 1, X2 = 2) = P (X4 = 3 | X3 = 1) = P (X1 = 3 | X0 = 1) = 0.1

Further

P 2 =











0 1 2 3

0 1 0 0 0
1 0.30 0.17 0.28 0.25
2 0.18 0.14 0.24 0.44
3 0 0 0 1











,

so that P (X2 = 3 | X0 = 1) follows as P 2[2, 4] = 0.25. Alternatively,

P (X2 = 3 | X0 = 1) = 0.3 · 0.1 + 0.4 · 0.3 + 0.1 · 1 = 0.25.

b) • Compute the probability of absorption into state 0 starting from state 1.

Solution:

This can be solved using a first step analysis. Let A denote that the
chain reaches state 0. Define

ui = P (A | X0 = i), i = 0, 1, 2, 3

Obviously u0 = 1 and u3 = 0. Further

u1 = 0.2 + 0.3u1 + 0.4u2 ⇒ 0.7u1 = 0.2 + 0.4u2 ⇒ u1 =
2

7
+

4

7
u2

u2 = 0.1 + 0.2u1 + 0.4u2

⇒ u2 =
1

10
+

2

10
· (

2

7
+

4

7
u2) +

4

10
u2

⇒
34

70
u2 =

11

70

⇒ u2 =
11

34

⇒ u1 =
2

7
+

22

119
≈ 0.47

The probability of absorption into state 0 starting from state 1 is given
by u1 = 0.47.
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• Starting in state 1, compute the expected time spent in each of states
1 and 2 prior to absorption in state 0 or 3.

Solution:

Let

PT =

(

1 2

1 0.3 0.4
2 0.2 0.4

)

,

be the matrix specifying only the transition probabilities from transient
into transient states. To find the desired quantities we need to compute

S = (I−PT )−1 =

(

7
10

− 4
10

− 2
10

6
10

)

−1

=
50

17

(

6
10

4
10

2
10

7
10

)

=

(

30
17

20
17

10
17

35
17

)

≈

(

1.765 1.176
0.588 2.059

)

The desired quantities are in S1,1 and S1,2. Thus, starting in state 1,
the expected number of periods spent in state 1 prior to absorption is
1.765, whereas the expected number of periods spent in state 2 is 1.176.

Problem 2

Let {Xn, n = 0, 1, . . .} denote a branching process in which all individuals are
assumed to have offsprings independently of each other. Xn denotes the population
size at the n-th generation and we assume that X0 = 1. By the end of its life time,
each individual is assumed to have produced no offspring with probability P0 = 1

8
,

one offspring with probability P1 = 1
2

and two offspring with probability P2 = 3
8

a) • Explain why this process is a Markov chain.

Solution (2 point):

As all individuals have offsprings independently of others, the popula-
tion size of the n-th generation will only depend on the population size
of the (n−1)-th generation and the given chain is then a Markov chain.

• Derive the state space. Which states are transient and which states are
recurrent?

Solution (2 point):

This chain is defined on the state space S = {0, 1, 2, ....} in which state
0 is recurrent while all the other states are transient.

b) Compute the expected number of offsprings of a single individual. What is
the probability that the population will die out?

Solution (4 points):
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The expected number of offsprings for each individual is

µ =
2
∑

j=0

jPj = 0 ·
1

8
+ 1 ·

1

2
+ 2 ·

3

8
=

10

8
> 1

The probability that the population will die out π0 is then given as the
smallest solution to the equation

π0 =
2
∑

j=0

πj
0Pj =

1

8
+ π0 ·

1

2
+ π2

0 ·
3

8
.

This gives

1

8
− π0 ·

1

2
+ π2

0 ·
3

8
= 0

⇓

π0 =
1
2

±
√

1
4

− 3
16

2 · 3
8

=
1
2

± 1
4

3
4

⇒ π0 = 1, π0 =
1

3
.

The probability that the population will die out it π0 = 1
3
.

Problem 3

An insurance company pays out claims on its life insurance policies in accordance
with a Poisson process having rate λ = 6 claims per week. Let N(t) be the number
of insurance claims at time t (measured in weeks) and assume that N(0) = 0.

a) • What is the expected time until the fifteenth insurance claim is paid?

Solution:

The expected time until the fifteenth insurance claim is paid is E(S15) =
15
λ

= 15
6

= 2.5 weeks.

• Find E(N(4) − N(2) | N(1) = 5)

Solution:

Independent increments give

E(N(4) − N(2) | N(1) = 5) = E(N(4) − N(2)) = E(N(2)) = 2λ = 12
claims.
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• Compute also P (N(3) ≥ 12).

Solution:

P (N(3) ≥ 12) = 1 − P (N(3) < 12)
Table
= 1 − 0.0549 = 0.9451

Assume that the amount of money paid on each policy are independent exponen-
tially distributed random variables with common mean 12000 kroner. Assume also
that the amount of money paid on each policy is independent of the number of
claims that are paid out.

b) What is the mean and variance of the total amount of money paid by the
insurance company in a four-week span?

Solution:

Let N denote the number of insurance claims per week and Xi the amount
of money paid on the i− th policy. We know that E(N) = V ar(N) = λ = 6.
Then

E(
N
∑

i=1

Xi) = E(E(
N
∑

i=1

Xi | N)) = . . . = E(N) · E(X).

Here, the expected total amount of money paid during a four-week time span
is 4 × 6 × 12000 = 288000 kroner.

The variance for a one-week period can be derived similarly

V ar(
N
∑

i=1

Xi) = V ar(E(
N
∑

i=1

Xi | N)) + E(V ar(
N
∑

i=1

Xi | N))

= . . . = E(N)V ar(X) + V ar(N)E(X)2

= 6 · 120002 + 6 · 120002 = 1.728 × 109

Thus for a four-week span the variance is 6.912 × 109 kroner2.

Problem 4

Biathlon commonly refers to the winter sport that combines cross-country skiing
and rifle shooting. Assume that the inhabitants of Oslo want to improve their
Biathlon skills and go to a popular skiing area to train. There is a stadium
with three public shooting stands available. Skiers arrive at the shooting stands
according to a Poisson process with rate 5 skiers per minute, i.e. λ = 1/12 skier
per second. If a shooting stand is free an entering skier immediately starts to
shoot and then leaves directly the stadium. If all stands are occupied he waits
in line and then goes to the first free shooting stand. The time a skier spends at
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either of the shooting stands is independent of the other skiers and exponentially
distributed with mean 30 seconds, i.e. with rate µ = 1/30.

Let X(t) denote the number of skiers in the stadium at time t, i.e. skiers who are
either shooting or waiting in line until a shooting stand becomes free. We assume
that X(0) = 0.

a) • Explain briefly why X(t) is a birth-death process and give all birth and
death rates.

Solution: (4 points)

The given process is a birth and death process as the number of skiers
in the stadium either increase with one (birth) or decrease with one
(death) and all times until the next arrival (birth) and termination of
shooting (death) are independent and exponentially distributed. The
birth rates are given by

λn = λ, n = 0, 1, 2, . . .

while the death rates are

µ1 = µ, µ2 = 2µ, µn = 3µ, for n = 3, 4, . . .

This is a M/M/3 queue and the transition diagram is

0 1 2 3 4

λ λ λ λ λ

3µµ 2µ 3µ 3µ

• If X(t) = 3, what is the expected time until all these three skiers have
finished shooting.

Solution: (4 points)

The time until a skier is finished with shooting is exponentially dis-
tributed with rate µ = 1/30. The time until the next skier is finished is
then the minimum of independent and exponentially distributed vari-
ables which is exponential with rate equal to the sum of the individual
rates. Meaning that eather of the three completions, assuming X(t) = 3
will move the system to X(t) = 2, and so on.
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3 2 1 0

µ + µ + µ = 3µ µ + µ = 2µ µ

The expected time W until all of the three skiers are finished is

E(W ) =
1

3µ
+

1

2µ
+

1

µ
=

30

3
+

30

2
+

30

1
=

330

6
≈ 55 seconds.

b) Starting at time 0, what is the expected time until X(t) = 3 for the first
time.

Solution: (4 points)

Let Ti denote the time, starting from start i, it takes for the process to enter
state i + 1, i ≥ 0. Hence the expected time to reach state 3 (in seconds) is:

E(T0) =
1

λ0

=
1

λ
= 12

E(T1) =
1

λ1

+
µ1

λ1

E(T0) = 12 +
12

30
· 12 = 16.8

E(T2) =
1

λ2

+
µ2

λ2

E(T1) = 12 +
2 · 12

30
· 16.8 = 25.44

⇒
2
∑

i=0

E(Ti) = 12 + 16.8 + 25.44 = 54.24 seconds.

In the remaining questions, first express the answers as functions of λ and µ.
Thereafter, compute the numerical answer for the parameter values given.

c) • Derive the limiting probabilities for X(t).

Solution:

In general

Pn =
θn

∑

∞

n=0 θn

where θ0 = 1 and

θn =
λ0 · · · λn−1

µ1 · · · µn
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Here,

θ1 =
λ0

µ1

=
λ

µ

θ2 =
λ0λ1

µ1µ2

=
λ2

2µ2
. . .

θn = θn =
λ0 · · · λn−1

µ1 · · · µn

=
λn

2 · 3n−2µn
, for n > 2

With λ = 1/12 and µ = 1/30 we obtain

∞
∑

n=0

θn = 1 +
λ

µ
+

1

2

∞
∑

n=2

(

λ

µ

)n
1

3n−2

= 1 +
λ

µ
+

1

2

(

λ

µ

)2
∞
∑

n=0

(

λ

3µ

)n

geom. series
= 1 +

λ

µ
+

1

2

(

λ

µ

)2
1

1 − λ
3µ

= 1 + 2.5 +
2.52

2 · (1 − 2.5
3

)
=

89

4
= 22.25

Hence, the limiting probabilities result as:

P0 =
1

∑

∞

n=0 θn

=
4

89
≈ 0.045

P1 = θ1P0 =
30

12

4

89
=

10

89
≈ 0.112

Pn = θnP0 =
λn

2 · 3n−2µn

4

89
=
(

5

2

)n 1

3n−2

2

89
=

25

4

(

5

6

)n−2 2

89
=

25

178

(

5

6

)n−2

, n ≥ 2

• In the long run what proportion of skiers can start shooting immediately
after arrival (i.e. without first waiting until a shooting stand becomes
free)?

Solution:

A skier can start shooting without waiting if either no, only one or only
two shooting stands are busy. Hence the desired probability is given by

P0 + P1 + P2 =
8 + 20 + 25

178
=

53

178
≈ 0.30
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d) • Compute the expected number of skiers in the stadium after a long time
has passed.

Solution:

Let L be the expected number of skiers in the stadium. Then

L =
∞
∑

n=0

nPn =
∞
∑

n=0

nθnP0

=
∞
∑

n=0

n

(

λn

2 · 3n−2 · µn
−

λ

2µ

)

·
1

1 + λ
µ

+ 1
2

·
(

λ
µ

)2
1

1−λ/(3µ)

=
1

1 + λ
µ

+ 1
2

·
(

λ
µ

)2
1

1−λ/(3µ)

[

∞
∑

n=0

n
1

2 · 3n−2

(

λ

µ

)n

−
λ

2µ

]

=
1

1 + λ
µ

+ 1
2

·
(

λ
µ

)2
1

1−λ/(3µ)

[

32

2

∞
∑

n=0

n

(

λ

3µ

)n

−
λ

2µ

]

=
1

1 + λ
µ

+ 1
2

·
(

λ
µ

)2
1

1−λ/(3µ)

[

3λ/µ

2(1 − λ/(3µ))2
−

λ

2µ

]

≈ 6.011236

The expected number of skiers in the stadium after a long time is 6.011.

• Use Little’s formula to find the average amount of time each skier spends
in the stadium.

Solution:

From Little’s form we get that the average amount of time W a skier
spents in the system is given by

W =
L

λ

=
6.011236

1/12
≈ 72.13483

A skier spends on average 72.13 seconds in the stadium.


