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Contact during exam:
Arvid Næss 73 59 70 53/ 99 53 83 50

EXAM IN COURSE TMA4265 STOCHASTIC PROCESSES
Wednesday, December 19, 2012

Time: 9:00–13:00

Permitted aid items:

• Yellow A-5 sheet with your own handwritten notes (stamped by the Department of
Mathematical Sciences)

• Tabeller og formler i statistikk, Tapir Forlag

• K. Rottmann: Matematisk formelsamling

• Calculator HP30S, Citizen SR-270X, Citizen SR-270X College

The results from the exam are due by January 23, 2013.

Problem 1 - A Repair System

Consider a system that has three components which must all function for the system to func-
tion. If a component fails it is replaced by a component from a replacement storage. After the
failed component has been replaced and the system is again functioning, the failed component
is repaired and then placed in the replacement storage. It is assumed that the replacement
storage can only contain one component. It is also assumed that components can only fail when
in function. Note that the system is in function only when three components are functioning.

For the modelling we simplify and let the possible states of the system be characterized as
follows:
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• State 3 : Three components are in function, one is in the replacement storage

• State 2 : Two components are in function, replacement with component from storage
is ongoing.

• State 1 : Three components are in function, none is in the replacement storage

• State 0 : Two components are in function, none is in the replacement storage

X(t) denotes the state of the system at time t. It is assumed that X(t) is a Markov chain in
continuous time with stationary transition probabilities.

For calculating the transition rates qij (cf. formula sheet), it is assumed that:

A component which is in function at time t fails during the time interval (t, t + h] with
probability λh+ o(h), independent of the other components.

Repair work on a component at time t is finished during the time interval (t, t + h] with
probability µh+ o(h), independent of the condition of the other components.

The expected time to replace a component which fails with a component from the replacement
storage is 1/γ.

a) Show that the transition rates for the Markov chain are as given in the communication
diagram below.

Figure 1:

b) Establish a set of equations that determines the stationary distribution ppp =
(

p0, p1, p2, p3
)

for the process. (You are not asked to solve the equations.)
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c) Given that the system does not function at time t, where t is large, determine (approxi-
mately) the probability that the system is in function at time t + h expressed in terms
of the pi, i = 0, . . . , 3, and parameters of the system. (h is a small number.)

d) Assume that X(0) = 3. Find the probability that the process after having left state 3
will visit state 0 before it returns to state 3. Based on this probability, justify that if
λ ≪ µ (≪ = much less than) the stationary distribution in point b) can be approximated
by putting the transition intensity q10 = 0. Determine the approximation to ppp that is
obtained in this way. (Hint: Simplify the communication diagramme.)

Problem 2 - A Queueing System

Consider an M/G/1 queueing system in which the first customer in a busy period has the
service time distribution G1 (and service time S1) and all others have service time distribution
G2 (and service time S2). Let S denote the service time of a customer chosen at random.

a) Argue why a0 = P0 = 1− λE[S]. Explain the symbols used.

b) Determine E[S] in terms of a0, E[S1] and E[S2].

c) Use the results in the previous point to show that

E[B] =
E[S1]

1− λE[S2]
,

where B denotes the length of a busy period. (Hint: Express P0 in terms of E[B] and
E[I] (I = idle period), and remember that E[I] = 1/λ.)

Problem 3 - Brownian Motion

A stochastic process B(t) (t ≥ 0) is a standard Brownian motion process if: (i) B(0) = 0, (ii)
B(t) has stationary and independent increments, and (iii) B(t) is normally distributed with
mean value 0 and variance t (for t > 0). It can be shown that B(t) has continuous realizations
(with probability 1).

a) For a > 0, let Ta = inf{t|B(t) ≥ a}. That is, Ta denotes the first time B(t) hits the level
a. Use the relation

P{B(t) ≥ a} = P{B(t) ≥ a|Ta ≤ t}P{Ta ≤ t}+ P{B(t) ≥ a|Ta > t}P{Ta > t} ,

to show that P{Ta ≤ t} = 2P{B(t) ≥ a}. From this result, write down the cumulative
distribution function for Ta in terms of the cumulative distribution function Φ(·) of an
N(0, 1) variable.
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b) For a > 0, determine the cumulative distribution function of max0<s≤t{B(s)} in terms
of Φ(·).

c) Show that P{Ta < ∞} = 1, while E[Ta] = ∞ (a > 0).
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Formulas for TMA4265 Stochastic Processes :

The law of total probability

Let B1, B2, . . . be pairwise disjoint events with P (∪∞
i=1Bi) = 1. Then

P (A|C) =
∞
∑

i=1

P (A|Bi ∩ C)P (Bi|C),

E[X|C] =
∞
∑

i=1

E[X|Bi ∩ C]P (Bi|C).

Discrete time Markov chains

Chapman-Kolmogorov equations

P
(m+n)
ij =

∞
∑

k=0

P
(m)
ik P

(n)
kj .

For an irreducible and ergodic Markov chain, πj = limn→∞ Pn
ij exist and is given by the equations

πj =
∑

i

πiPij og
∑

i

πi = 1.

For transient states i, j and k, the expected time spent in state j given start in state i, sij , is

sij = δij +
∑

k

Pikskj .

For transient states i and j, the probability of ever returning to state j given start in state i, fij , is

fij = (sij − δij)/sjj .

The Poisson process

The waiting time to the n-th event (the n-th arrival time), Sn, has the probability density

fSn
(t) =

λntn−1

(n− 1)!
e−λt for t ≥ 0.

Given that the number of events N(t) = n, the arrival times S1, S2, . . . , Sn have the joint probability
density

fS1,S2,...,Sn|N(t)(s1, s2, . . . , sn|n) =
n!

tn
for 0 < s1 < s2 < . . . < sn ≤ t.
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Markov processes in continuous time

A (homogeneous) Markov process X(t), 0 ≤ t ≤ ∞, with state space Ω ⊆ Z+ = {0, 1, 2, . . .}, is called
a birth and death process if

Pi,i+1(h) = λih+ o(h)

Pi,i−1(h) = µih+ o(h)

Pi,i(h) = 1− (λi + µi)h+ o(h)

Pij(h) = o(h) for |j − i| ≥ 2

where Pij(s) = P (X(t+ s) = j|X(t) = i), i, j ∈ Z+, λi ≥ 0 are birth rates, µi ≥ 0 are death rates.

The Chapman-Kolmogorov equations

Pij(t+ s) =
∞
∑

k=0

Pik(t)Pkj(s).

Limit relations

lim
h→0

1− Pii(h)

h
= vi , lim

h→0

Pij(h)

h
= qij , i 6= j

Kolmogorov’s forward equations

P ′
ij(t) =

∑

k 6=j

qkjPik(t)− vjPij(t).

Kolmogorov’s backward equations

P ′
ij(t) =

∑

k 6=i

qikPkj(t)− viPij(t).

If Pj = limt→∞ Pij(t) exist, Pj are given by

vjPj =
∑

k 6=j

qkjPk og
∑

j

Pj = 1.

In particular, for birth and death processes

P0 =
1

∑∞
k=0 θk

og Pk = θkP0 for k = 1, 2, . . .

where

θ0 = 1 og θk =
λ0λ1 · . . . · λk−1

µ1µ2 · . . . · µk

for k = 1, 2, . . .
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Queueing theory

For the average number of customers in the system L, in the queue LQ; the average amount of time a
customer spends in the system W , in the queue WQ; the service time S; the average remaining time
(or work) in the system V , and the arrival rate λa, the following relations obtain

L = λaW.

LQ = λaWQ.

V = λaE[SW ∗
Q] + λaE[S2]/2.

Some mathematical series

n
∑

k=0

ak =
1− an+1

1− a
,

∞
∑

k=0

kak =
a

(1− a)2
,

Differential equation

The differential equation f ′(t) + αf(t) = g(t) for t ≥ 0 with initial condition f(0) = a has the
solution

f(t) = ae−αt +

∫ t

0
e−α(t−s)g(s) ds


