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Problem 1

Consider the Markov chain whose transition probability matrix is given by


0 1 2 3

0 1 0 0 0
1 0.2 0.3 0.4 0.1
2 0.1 0.2 0.4 0.3
3 0 0 0 1


a) • Draw a state transition diagram and determine the equivalence classes.

• Which states are recurrent and which states are transient? Justify your
answer.
• Calculate the following probabilities:

P (X4 = 3 | X3 = 1, X2 = 2) and P (X2 = 3 | X0 = 1)

b) • Compute the probability of absorption into state 0 starting from state 1.
• Starting in state 1, compute the expected time spent in each of states

1 and 2 prior to absorption in state 0 or 3.

Problem 2

Let {Xn, n = 0, 1, . . .} denote a branching process in which all individuals are
assumed to have offsprings independently of each other. Xn denotes the population
size at the n-th generation and we assume that X0 = 1. By the end of its life time,
each individual is assumed to have produced no offspring with probability P0 = 1

8 ,
one offspring with probability P1 = 1

2 and two offspring with probability P2 = 3
8 .

a) • Explain why this process is a Markov chain.
• Derive the state space. Which states are transient and which states are

recurrent?

b) Compute the expected number of offsprings of a single individual. What is
the probability that the population will die out?
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Problem 3

An insurance company pays out claims on its life insurance policies in accordance
with a Poisson process having rate λ = 6 claims per week. Let N(t) be the number
of insurance claims at time t (measured in weeks) and assume that N(0) = 0.

a) • What is the expected time until the fifteenth insurance claim is paid?
• Find E(N(4)−N(2) | N(1) = 5)
• Compute also P (N(3) ≥ 12).

Assume that the amount of money paid on each policy are independent exponen-
tially distributed random variables with common mean 12000 kroner. Assume also
that the amount of money paid on each policy is independent of the number of
claims that are paid out.

b) What is the expected value and variance of the total amount of money paid
by the insurance company in a four-week span?

Problem 4

Biathlon commonly refers to the winter sport that combines cross-country skiing
and rifle shooting. Assume that the inhabitants of Oslo want to improve their
Biathlon skills and go to a popular skiing area to train. There is a stadium
with three public shooting stands available. Skiers arrive at the shooting stands
according to a Poisson process with rate 5 skiers per minute, i.e. λ = 1/12 skier
per second. If a shooting stand is free an entering skier immediately starts to
shoot and then leaves directly the stadium. If all stands are occupied he waits
in line and then goes to the first free shooting stand. The time a skier spends at
either of the shooting stands is independent of the other skiers and exponentially
distributed with mean 30 seconds, i.e. with rate µ = 1/30.

Let X(t) denote the number of skiers in the stadium at time t, i.e. skiers who are
either shooting or waiting in line until a shooting stand becomes free. We assume
that X(0) = 0.

a) • Explain briefly why X(t) is a birth-death process and give all birth and
death rates.
• If X(t) = 3, what is the expected time until all these three skiers have

finished shooting.
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b) Starting at time 0, what is the expected time until X(t) = 3 for the first
time.

In the remaining questions, first express the answers as functions of λ and µ.
Thereafter, compute the numerical answer for the parameter values given.

c) • Derive the limiting probabilities for X(t).
(You can use that: ∑∞

k=0 a
k = 1

1−a , if |a| < 1.)
• In the long run what proportion of skiers can start shooting immediately

after arrival (i.e. without first waiting until a shooting stand becomes
free)?

d) • Compute the expected number of skiers in the stadium after a long time
has passed.
• Use Little’s formula to find the average amount of time each skier spends

in the stadium.
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Formulas for TMA4265 Stochastic Processes:

The law of total probability

Let B1, B2, . . . be pairwise disjoint events with P (∪∞i=1Bi) = 1. Then

P (A|C) =
∞∑
i=1

P (A|Bi ∩ C)P (Bi|C),

E[X|C] =
∞∑
i=1

E[X|Bi ∩ C]P (Bi|C).

Discrete time Markov chains

Chapman-Kolmogorov equations

P
(m+n)
ij =

∞∑
k=0

P
(m)
ik P

(n)
kj .

For an irreducible and ergodic Markov chain, πj = limn→∞ P
(n)
ij exist and is given by

the equations
πj =

∑
i

πiPij and
∑
i

πi = 1.

For transient states i, j and k, the expected time spent in state j given start in state i,
sij , is

sij = δij +
∑
k

Pikskj .

For transient states i and j, the probability of ever returning to state j given start in
state i, fij , is

fij = (sij − δij)/sjj .

The Poisson process

The waiting time to the n-th event (the n-th arrival time), Sn, has the probability density

fSn(t) = λntn−1

(n− 1)!e
−λt for t ≥ 0.

Given that the number of events N(t) = n, the arrival times S1, S2, . . . , Sn have the joint
probability density

fS1,S2,...,Sn|N(t)(s1, s2, . . . , sn|n) = n!
tn

for 0 < s1 < s2 < . . . < sn ≤ t.



TMA4265 Stochastic Processes Page 5 of 6

Markov processes in continuous time

A (homogeneous) Markov process X(t), 0 ≤ t ≤ ∞, with state space Ω ⊆ Z+ =
{0, 1, 2, . . .}, is called a birth and death process if

Pi,i+1(h) = λih+ o(h)

Pi,i−1(h) = µih+ o(h)

Pi,i(h) = 1− (λi + µi)h+ o(h)

Pij(h) = o(h) for |j − i| ≥ 2

where Pij(s) = P (X(t + s) = j|X(t) = i), i, j ∈ Z+, λi ≥ 0 are birth rates, µi ≥ 0 are
death rates.

The Chapman-Kolmogorov equations

Pij(t+ s) =
∞∑
k=0

Pik(t)Pkj(s).

Limit relations
lim
h→0

1− Pii(h)
h

= vi , lim
h→0

Pij(h)
h

= qij , i 6= j

Kolmogorov’s forward equations

P ′ij(t) =
∑
k 6=j

qkjPik(t)− vjPij(t).

Kolmogorov’s backward equations

P ′ij(t) =
∑
k 6=i

qikPkj(t)− viPij(t).

If Pj = limt→∞ Pij(t) exist, Pj are given by

vjPj =
∑
k 6=j

qkjPk and
∑
j

Pj = 1.

In particular, for birth and death processes

P0 = 1∑∞
k=0 θk

and Pk = θkP0 for k = 1, 2, . . .

where
θ0 = 1 and θk = λ0λ1 · . . . · λk−1

µ1µ2 · . . . · µk
for k = 1, 2, . . .
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Queueing theory

For the average number of customers in the system L, in the queue LQ; the average
amount of time a customer spends in the system W , in the queue WQ; the service time
S; the average remaining time (or work) in the system V , and the arrival rate λa, the
following relations obtain

L = λaW.

LQ = λaWQ.

V = λaE[SW ∗Q] + λaE[S2]/2.

Some mathematical series

n∑
k=0

ak = 1− an+1

1− a ,
∞∑
k=0

kak = a

(1− a)2 .


