TMA 4265 Stochastic
 Processes

Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Solution - Exercise 4

Exercises from the text book

4.18

Coin number one comes up heads with probability 0.6 and coin number two with probability 0.5 . A coin is continually flipped until it comes up tails, at which time that coin is put aside and we start flipping the other one.

Define state 0 to flip coin number one, and state 1 to flip coin number two. Transition matrix

$$
P=\left[\begin{array}{ll}
0.6 & 0.4 \\
0.5 & 0.5
\end{array}\right]
$$

a) Want to know what proportion of flips we use coin number one.

We find the stationary probabilities by solving

$$
\pi_{j}=\sum_{i=0}^{\infty} \pi_{i} P_{i j}, j \geq 0, \text { where } \sum_{j=0}^{\infty} \pi_{j}=1
$$

In this case we get

$$
\begin{aligned}
\pi_{0} & =0.6 \pi_{1}+0.5 \pi_{1} \\
\pi_{1} & =0.4 \pi_{0}+0.5 \pi_{1} \\
\pi_{0}+\pi_{1} & =1
\end{aligned}
$$

By solving the system of equations, we get $\pi_{0}=\frac{5}{9}$ and $\pi_{1}=\frac{4}{9}$. This means that we will use coin number one in $\frac{5}{\underline{9}}$ of the flips.
b) If we start the process with coin number one, what is the probability that coin number two is used in the fifth flip?

We have to find P_{01}^{4}.

$$
P^{2}=\left[\begin{array}{ll}
0.6 & 0.4 \\
0.5 & 0.5
\end{array}\right]\left[\begin{array}{ll}
0.6 & 0.4 \\
0.5 & 0.5
\end{array}\right]=\left[\begin{array}{ll}
0.56 & 0.44 \\
0.55 & 0.45
\end{array}\right]
$$

$$
P^{4}=P^{2} P^{2}\left[\begin{array}{ll}
0.56 & 0.44 \\
0.55 & 0.45
\end{array}\right]\left[\begin{array}{ll}
0.56 & 0.44 \\
0.55 & 0.45
\end{array}\right]=\left[\begin{array}{ll}
0.5556 & 0.4444 \\
0.5555 & 0.4445
\end{array}\right]
$$

We see that the probability is $\underline{\underline{P_{01}^{4}==0.4444 \approx \frac{4}{9}}}$.

4.20

- P is doubly stochastic $\Longleftrightarrow \sum_{i} P_{i j}=1 \forall j$
- Let the chain be irreducible and aperiodic, and consist of $M+1$ states $0,1, \ldots, M$
- Show that the limiting distributions are given by:

$$
\begin{equation*}
\pi_{j}=\frac{1}{M+1} \quad j=0, \ldots, M \tag{1}
\end{equation*}
$$

- As the chain is aperiodic and irreducible, the limiting distributions are equal to the stationary distributions which fulfil:
i)

$$
\pi_{j}=\sum_{i} \pi_{i} P_{i j}
$$

ii)

$$
\sum_{i} \pi_{i}=1
$$

- We see that by putting $\pi_{j}=\frac{1}{M+1} \forall j$, we obtain:
i)

$$
\pi_{j}=\sum_{i} \pi_{i} P_{i j}=\sum \frac{1}{M+1} P_{i j}=\frac{1}{M+1} \cdot \sum_{i} P_{i j}=\underline{\underline{\underline{M+1}}}
$$

ii)

$$
\sum_{i} \pi_{i}=\sum_{i=0}^{M} \frac{1}{M+1}=\frac{1}{M+1} \cdot(M+1)=\underline{\underline{1}}
$$

- Therefore (1) is the limiting distributions of the Markov chain.
- Let X_{n} be the number of pairs of shoes at the front door at time n. We have that:

$$
\begin{aligned}
P_{01}= & P\left(X_{n}=1 \mid X_{n-1}=0\right) \\
= & P\left(\text { Departs from back door, enters at front door } \mid X_{n-1}=0\right)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} \\
& \Downarrow \\
P_{00}= & 1-P_{01}=\frac{3}{4}=P_{k k} \\
0<i<k & \left\{\begin{array}{l}
P_{i-1, i}=P\left(\text { Departs from back door, enters at front door } \mid X_{n-1}=i-1\right)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} \\
P_{i, i-1}=P\left(\text { Departs from front door, enters at back door } \mid X_{n-1}=i-1\right)=\frac{1}{2} \cdot \frac{1}{2}=\underline{1} \\
P_{i i}=1-\left(\frac{1}{4}+\frac{1}{4}\right)=\frac{1}{2}
\end{array}\right.
\end{aligned}
$$

Transition matrix:

$$
P=\left[\begin{array}{ccccccc}
\frac{3}{4} & \frac{1}{4} & 0 & \ldots & \ldots & \ldots & 0 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 & \ldots & \ldots & 0 \\
0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ddots & \ddots & \ldots & \vdots \\
0 & 0 & \ldots & \ldots & \ldots & \frac{1}{4} & \frac{3}{4}
\end{array}\right]
$$

- The transition matrix is doubly stochastic (see exercise 4.20), hence $\pi_{j}=\frac{1}{k+1} \forall j$ (P is both irreducible and aperiotic)
- We have:

$$
\begin{aligned}
P(\text { runs barefooted }) & =P\left(X_{n}=0 \mid \text { front door }\right) \cdot P(\text { front door })+P\left(X_{n}=k \mid \text { back door }\right) \cdot P(\text { back door }) \\
& =\pi_{0} \cdot \frac{1}{2}+\pi_{k} \cdot \frac{1}{2} \\
& =\frac{1}{k+1} \cdot \frac{1}{2}+\frac{1}{k+1} \cdot \frac{1}{2} \\
& =\underline{\underline{\frac{1}{k+1}}}
\end{aligned}
$$

4.32

See solution in the book.

Exercises from exams

Eks. Jan. 98, oppg. 2

a)

When $X_{n}=0$ we need to have $X_{n+1} \sim \operatorname{bin}(12,0.06)$ which means

$$
\begin{aligned}
P\left(X_{n+1}=2 \mid X_{n}=0\right) & =\binom{12}{2} \cdot 0.06^{2} \cdot 0.94^{10} \\
& =\underline{\underline{0.128}}
\end{aligned}
$$

similarly

$$
\begin{aligned}
P\left(X_{n+1}=0 \mid X_{n}=2\right) & =\binom{10}{0} \cdot 0.06^{0} \cdot 0.94^{10} \cdot\binom{2}{0} \cdot 0.5^{0} \cdot 0.5^{2} \\
& =\underline{\underline{0.135}}
\end{aligned}
$$

Let A_{n} be the number of members who both have a car on day n and want a car on day $n+1$.

$$
\begin{aligned}
P\left(X_{n+1}=1 \mid X_{n}=1\right)= & P\left(X_{n+1}=1 \mid X_{n}=1, A_{n}=0\right) \cdot P\left(A_{n}=0 \mid X_{n}=1\right) \\
& +P\left(X_{n+1}=1 \mid X_{n}=1, A_{n}=1\right) \cdot P\left(A_{n}=1 \mid X_{n}=1\right) \\
= & \binom{11}{1} \cdot 0.06^{1} \cdot 0.94^{10} \cdot 0.5+\binom{11}{0} \cdot 0.06^{0} \cdot 0.94^{11} \cdot 0.5 \\
= & \underline{\underline{0.431}}
\end{aligned}
$$

b)
W_{n} : amount payed by the members on day n.

$$
W_{n}= \begin{cases}X_{n} \cdot 125 & \text { if } X_{n} \leq 2 \\ 2 \cdot 125 & \text { if } X_{n}=3\end{cases}
$$

In the long run:

$$
\begin{aligned}
E\left[W_{n}\right] & =0 \cdot \pi_{0}+125 \cdot \pi_{1}+250 \cdot \pi_{2}+250 \cdot \pi_{3} \\
& =\underline{\underline{136.25}}
\end{aligned}
$$

Number of cars rented each day in the long run is:

$$
0 \cdot \pi_{0}+1 \cdot \pi_{1}+2 \cdot \pi_{2}+2 \cdot \pi_{3}=1.09
$$

Per wants to use his part of this, that is, the number of days Per uses a car is:

$$
\begin{aligned}
P(\text { Per uses })=\frac{1.09}{12} & =\underline{\underline{0.0908}} \\
P(\text { Per uses } \mid \text { Per wishes }) & =\frac{P(\text { Per uses } \cap+\text { Per wishes })}{P(\text { Per wishes })} \\
& =\frac{P(\text { Per uses })}{P(\text { Per wishes })}
\end{aligned}
$$

Have to find P (Per wishes).
$P($ Per wishes on day $n)$
$=P($ Per wishes on day $n \mid$ Per uses on day $n-1) \cdot P($ Per uses on day $n-1)$
$+P($ Per wishes on day $n \mid$ Per does not use on day $n-1) \cdot P($ Per does not use on day $n-1)$
$=0.5 \cdot \frac{1.09}{12}+0.06 \cdot\left(1-\frac{1.09}{12}\right)$
$=\underline{\underline{0.100}}$
such that:

$$
P(\text { Per uses } \mid \text { Per wishes })=\frac{0.0908}{0.100}=\underline{\underline{0.909}}
$$

c)

The behaviour of the members becomes dependent upon each other. Define:

$$
U_{n}= \begin{cases}1 & \text { if a certain member wishes to use a car } \\ 0 & \text { otherwise }\end{cases}
$$

This is a Markov chain with transition matrix

$$
P=\left[\begin{array}{cc}
0.94 & 0.06 \\
0.5 & 0.5
\end{array}\right]
$$

The limiting distribution is given by:

$$
\left.\begin{array}{l}
\pi_{0}=0.94 \cdot \pi_{0}+0.5 \cdot \pi_{1} \\
\pi_{1}=0.06 \cdot \pi_{0}+0.5 \cdot \pi_{1} \\
1=\pi_{0}+\pi_{1}
\end{array}\right\} \Rightarrow \pi_{0}=0.8929 \quad \pi_{1}=0.1071
$$

Let Y_{n} be the number of members who whish a car on day n. In the long run we get:
$Y_{n} \sim \operatorname{bin}(12,0.1071)$
such that:
$\mathrm{P}\left(Y_{n}=0\right)=0.2568$
$\mathrm{P}\left(Y_{n}=1\right)=0.3697$
$\mathrm{P}\left(Y_{n}=2\right)=0.2439$
$\mathrm{P}\left(Y_{n} \geq 3\right)=0.1297$

Let:
V_{n} : net income at day n, that is,

$$
\begin{aligned}
V_{n}= & \begin{cases}125 \cdot Y_{n} & \text { if } Y_{n} \leq 2 \\
125 \cdot Y_{n}-250 \cdot\left(Y_{n}-2\right) & \text { if } Y_{n} \geq 3\end{cases} \\
& = \begin{cases}125 \cdot Y_{n} & \text { if } Y_{n} \leq 2 \\
500-125 \cdot Y_{n} & \text { if } Y_{n} \geq 3\end{cases}
\end{aligned}
$$

In the long run:

$$
\begin{aligned}
E\left[V_{n}\right]= & 125 \cdot P\left(Y_{n}=1\right)+250 \cdot P\left(Y_{n}=2\right) \\
& +\sum_{i=3}^{12}(500-250 \cdot i) \cdot P\left(Y_{n}=i\right) \\
= & 125 \cdot P\left(Y_{n}=1\right)+250 \cdot P\left(Y_{n}=2\right) \\
& +500 \cdot P\left(Y_{n} \geq 3\right)-125 \cdot \underbrace{\sum_{i=3}^{12} i \cdot P\left(Y_{n}=i\right)} \\
= & 125 \cdot 0.3697+250 \cdot 0.2439+5\left[Y_{n}\right]-P\left(Y_{n}=1\right)-2 \cdot P\left(Y_{n}=2\right) \\
= & \underline{\underline{118.58}}
\end{aligned}
$$

Eks. Aug. 98, oppg. 1
a)

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{2}=1 \mid X_{0}=0\right\} & =\operatorname{Pr}\left\{X_{1}=0 \cap X_{2}=1 \mid X_{0}=0\right\} \\
& =\operatorname{Pr}\left\{X_{1}=0 \mid X_{0}=0\right\} \cdot \operatorname{Pr}\left\{X_{2}=1 \mid X_{1}=0\right\} \\
& =\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{\underline{4}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{3}=0 \mid X_{0}=0\right\} & =\operatorname{Pr}\left\{X_{1}=0 \cap X_{2}=0 \cap X_{3}=0 \mid X_{0}=0\right\} \\
& +\operatorname{Pr}\left\{X_{1}=0 \cap X_{2}=1 \cap X_{3}=0 \mid X_{0}=0\right\} \\
& +\operatorname{Pr}\left\{X_{1}=1 \cap X_{2}=0 \cap X_{3}=0 \mid X_{0}=0\right\} \\
& +\operatorname{Pr}\left\{X_{1}=1 \cap X_{2}=2 \cap X_{3}=0 \mid X_{0}=0\right\} \\
& =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{\underline{2}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{4}=3 \mid X_{0}=0\right\} & =\operatorname{Pr}\left\{X_{1}=0 \cap X_{2}=1 \cap X_{3}=2 \cap X_{4}=3 \mid X_{0}=0\right\} \\
& +\operatorname{Pr}\left\{X_{1}=1 \cap X_{2}=2 \cap X_{3}=3 \cap X_{4}=3 \mid X_{0}=0\right\} \\
& =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 1=\underline{\underline{\frac{3}{16}}=0,1875}
\end{aligned}
$$

b) Let $v_{i}=E\left[T \mid X_{0}=i\right], T=\min _{n \geq 0}\left\{n: X_{n}=3\right\}$

First step analysis gives the equations

$$
\begin{aligned}
v_{0} & =\frac{1}{2} v_{0}+\frac{1}{2} v_{1}+1 \\
v_{1} & =\frac{1}{2} v_{0}+\frac{1}{2} v_{2}+1 \\
v_{2} & =\frac{1}{2} v_{0}+\frac{1}{2} v_{3}+1 \\
v_{3} & =0
\end{aligned}
$$

which give

$$
\begin{aligned}
& v_{2}=\frac{1}{2} v_{0}+1 \\
& v_{1}=\frac{1}{2} v_{0}+\frac{1}{2}\left(\frac{1}{2} v_{0}+1\right)+1=\frac{3}{4} v_{0}+\frac{3}{2} \\
& v_{0}=\frac{1}{2} v_{0}+\frac{1}{2}\left(\frac{3}{4} v_{0}+\frac{3}{2}\right)+1=\frac{7}{8} v_{0}+\frac{7}{4}
\end{aligned}
$$

$\Rightarrow v_{0}=\frac{7}{4} \cdot 8=\underline{\underline{14}}$
c) Let Y_{n} be the number of the last flips who coincides with the start of the sequence MKK and get the transition matrix

$$
\begin{aligned}
& \\
& 0 \\
& 0 \\
& 1 \\
& 2 \\
& 3
\end{aligned}\left(\begin{array}{cccc}
0 & 1 & 2 & 3 \\
1 / 2 & 1 / 2 & 0 & 0 \\
0 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Firs step analysis gives the equations:

$$
\begin{aligned}
v_{0} & =\frac{1}{2} v_{0}+\frac{1}{2} v_{1}+1 \\
v_{1} & =\frac{1}{2} v_{1}+\frac{1}{2} v_{2}+1 \\
v_{2} & =\frac{1}{2} v_{1}+\frac{1}{2} v_{3}+1 \\
v_{3} & =0
\end{aligned}
$$

which give

$$
\begin{aligned}
v_{2} & =\frac{1}{2} v_{1}+1 \\
v_{1} & =\frac{1}{2} v_{1}+\frac{1}{2}\left(\frac{1}{2} v_{1}+1\right)+1=\frac{3}{4} v_{1}+\frac{3}{2} \\
& \Rightarrow v_{1}=\frac{3}{2} \cdot 4=6 \\
v_{0} & =\frac{1}{2} v_{0}+\frac{1}{2} \cdot 6+1 \\
& \Rightarrow v_{0}=4 \cdot 2=\underline{\underline{8}}
\end{aligned}
$$

It is reasonable that this solution is less than in b) as you return to state 0 if you get a "wrong flip"in X_{n}, and as you only return to state 1 with a "wrong flip"in Y_{n}.
d) The system of equations for the stationay distribution

$$
\begin{aligned}
\pi_{0} & =\frac{1}{2} \pi_{0}+\frac{1}{2} \pi_{1}+\frac{1}{2} \pi_{2}+\frac{1}{2} \pi_{3} \\
\pi_{1} & =\frac{1}{2} \pi_{0} \\
\pi_{2} & =\frac{1}{2} \pi_{1} \\
\pi_{0} & +\pi_{1}+\pi_{2}+\pi_{3}=1
\end{aligned}
$$

such that

$$
\begin{gathered}
\pi_{0}=\frac{1}{2} \pi_{0}+\frac{1}{4} \pi_{0}+\frac{1}{8} \pi_{0}+\frac{1}{2} \pi_{3} \\
\Rightarrow \frac{1}{8} \pi_{0}=\frac{1}{2} \pi_{3} \Rightarrow \pi_{3}=\frac{1}{4} \pi_{0}
\end{gathered}
$$

and

$$
\begin{gathered}
\pi_{0}+\frac{1}{2} \pi_{0}+\frac{1}{4} \pi_{0}+\frac{1}{4} \pi_{0}=2 \pi_{0}=1 \Rightarrow \pi_{0}=\frac{1}{2} \\
\pi_{0}=\frac{1}{2}, \pi_{1}=\frac{1}{4}, \pi_{2}=\frac{1}{8}, \pi_{3}=\frac{1}{8}
\end{gathered}
$$

The chain has a limiting distribution because it is irreducible and aperiodic ($P_{00}>0$). The limiting distribution is equal to the stationary distribution given above.
In the long run we will obtain MMM as the three final flips after $\frac{1}{8}$ of the flips.

