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TMA 4265 Stochastic

Processes

Solution - Exercise 9

Exercises from the text book

5.29

Kidney transplant

TA ∼ exp(µA)
TB ∼ exp(µB)

T1 = Time when new kidney arrives ∼ exp(λ)
T2 = Waiting time between arrival of first and second kidney ∼
exp(λ)

(as arrival of kidneys is Pois-
son process)

Rules:
i) First kidney goes to A (to B if A i dead)
ii) Second kidney goes to B (if B is still alive)

a)

Pr(A gets new kidney) = Pr(T1 < TA) =
λ

λ + µA

b)

Pr(B gets new kidney) = Pr(TB > T1)P (TA < T1) + P (TB > T1 + T2)P (TA > T1)

= Pr(TB > T1)P (TA < T1) + P (TB > T1 + T2|TB > T1)P (TB > T1)P (TA > T1)

= Pr(TB > T1)P (TA < T1) + P (TB > T2)P (TB > T1)P (TA > T1)

=
λ

µB + λ
·

µA

µA + λ
+

(

λ

µB + λ

)2

·
λ

µA + λ
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5.42

N(t) ∼ Poisson(λt)

Sn = Time of n’th event ∼ Gamma(λ, n)

E[Sn] =
n

λ

a)

E[S4] =
4

λ

b)

E[S4 |N(1) = 2 ] = E[T1 + T2 + T3 + T4 |N(1) = 2 ]

= E[1 + T3 + T4]

= 1 +
2

λ

We know that T3 has not yet occured, and as T3 ∼ exp(λ), this is like restarting with
T3.

c) Independent increments give

E[N(4) −N(2) |N(1) = 3] = E[N(4) −N(2) ]

= E[N(4− 2) ] = E[N(2) ]

= 2λ

5.60

Customers arrive at a bank at a Poisson rate λ. Suppose two customers arrived during the
first hour, that is, N(1) = 2.

We need to know that P (N(t + s)−N(s) = n) = e−λt (λt)n

n! .

What is the probability that:

a) Both arrived during the first 20 minutes?
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We need to find:

P (N(
1

3
) = 2 | N(1) = 2) =

P (N(1
3 ) = 2 ∩N(1) = 2)

P (N(1) = 2)

=
P (N(1

3 ) = 2) · P (N(2
3 ) = 0)

P (N(1) = 2)

=
e−λ 1

3
(λ 1

3
)2

2! e−λ 2

3
(λ 2

3
)0

0!

e−λ λ2

2!

=
e−λ

(

1
3

)2
λ2

e−λλ2
=

(

1

3

)2

=
1

9

b) At least one arrived during the first 20 minutes?

We have two possibilities. Either both arrived during the first 20 minutes, or only one
arrived during the first 20 minutes and the second during the 40 last minutes. The first
possibility was calculated in a). The second is:

P (N(
1

3
) = 1 | N(1) = 2) =

P (N(1
3 ) = 1 ∩N(1) = 2)

P (N(1) = 2)

=
P (N(1

3 ) = 1) · P (N(2
3 ) = 1)

P (N(1) = 2)

=
e−λ 1

3
(λ 1

3
)1

1! e−λ 2

3
(λ 2

3
)1

1!

e−λ λ2

2!

=
2
9e−λλ2

1
2e−λλ2

=
4

9

The probability that at least one arrived during the first 20 minutes is then 1
9 + 4

9 = 5
9

5.62

N = number of errors in text ∼ Poisson(λ)
Pi = probability that proofreader i finds the error, i = 1,2

X1 = number of errors found by proofreader 1, but not by 2
X2 = number of errors found by proofreader 2, but not by 1
X3 = number of errors found by both
X4 = number of errors not found

a) X1, ...,X4 have marginals like shown in b). Similarly as in exercise 5.44c), they are in-
dependent and have simultaneous distribution

Pr{X1 = x1, ...,X4 = x4} = Pr{X1 = x1} · ... · Pr{X4 = x4}
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b)

We have
X1 | N = n ∼ Bin(n, p) p = p1(1− p2)
⇓
X1 ∼ Poisson(λ · p) ⇒ E[X1] = λp1(1− p2)
X2 ∼ Poisson(λ · p2(1− p1))) ⇒ E[X2] = λp2(1− p1)
... E[X3] = λp1p2 (1)
X4 ∼ Poisson(λ · (1− p1)(1− p2)) ⇒ E[X4] = λ(1− p1)(1− p2) (2)

This gives E[X1]
E[X3]

= 1−p2

p2
og E[X2]

E[X3]
= 1−p1

p1

c)

Estimator:
Put in X1, ...,X3 for E[X1], ..., E[X3] in the answers from b), and get

p̂1 = X3

X2+X3
and p̂2 = X3

X1+X3

From (1) we obtain

λ̂ = X3

p̂1p̂2
= ... = X1 + X2 + X3 + X1·X2

X3

d)

(2) gives: X̂4 = λ̂(1− p̂1)(1 − p̂2) = ... = X1·X2

X3

5.75

“Single-server station”.

Vi = time between successive arrivals ∼ F (iid)
Si = service time ∼ G(iid)
Xn = number of customers in system immediately before n’th arrival
Yn = number of customers in system immediately after n’th departure

We have

Xn = Xn−1 + 1−Dn and Yn =

{

Yn−1 − 1 + An Yn−1 ≥ 1
An Yn−1 = 0

(⋆)

where
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Dn = number of customers being serviced during n’th arrival time Vn

An = number of customers arriving during n’th departure time Sn

Demand:
{Xn} Markov chain ⇔ Xn | Xn−1 independent of {Xk}k≤n−2

a) If Vi ∼ F = exp(λ), that is, forgetful, then An is independent of all events before Yn−1,
that is, independent of {Yk}k≤n−2. (An is, however, dependent of Sn).

From (⋆) we know that Yn | Yn−1 is independent of {Yk}k≤n−2 ⇒ {Yn} is a Markov chain.

(If F was not forgetful, An would have been dependent of how much time before Yn−1

the last arrival appeared; denote this time by T . If (Yn−k, ..., Yn−1) = (r + k, ..., r), that
is, if no one arrives during the last k departure times, there is a large probability that
T is large. Therefore An is dependent of {Yk}k≤n−2 ⇒ {Yn} NOT Markov!!!

{Yk}k≤2
independent
←→ T

independent
←→ An)

b) If Si ∼ G = exp(µ), that is, forgetful, Dn is independent of everything that happened
prior to Xn−1, that is, independent of {Xk}k≤n−2

From (⋆) we know that Xn | Xn−1 is independent of {Xk}k≤n−2 ⇒ {Xn} is a Markov
chain.

Using a simular argument as in a), we obtain that {Xn} is not a Markov chain if G is
not forgetful.

c) From a) we know that when F ∼ exp(λ), then {Yn} is a Markov chain, and (⋆) gives
that

Pr{Yn = k | Yn−1 = j} = Pr{Yn−1 − 1 + An = k | Yn−1 = j}

= Pr{An = k − j + 1 | Yn−1 = j} = Pr{An = k − j + 1}

(An is independent of Yn−1, j ≥ 1)

The low of total probability gives that

Pr{An = k′} =
∫ ∞
0 Pr{An = k′ | Sn = s} · gsn(s)ds =

∫ ∞
0

(λs)k′

k′! e−λs · gsn(s)ds

The transition probabilities for {Yn} are

PYn(j, k) =

{

∫ ∞
0

(λs)k−j+1

(k−j+1)! e−λsg(s)ds j ≥ 1, k ≥ j − 1
∫ ∞
0

(λs)k

k! e−λsg(s)ds j = 0, k ≥ j
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Similarly we have that when G∼ exp(µ), {Xn} is a Markov chain, and (⋆) gives

Pr{Xn = k | Xn−1 = j} = Pr{Xn−1 + 1−Dn = k | Xn−1 = j}

= Pr{Dn = j − k + 1 | Xn−1 = j}

If we condition on the arrival time Vn, we get that

Pr{Dn = k′ | Vn = v,Xn−1 = j} =











(µv)k′

k′! e−µv k′ ≤ j
∑∞

i=k′

(µv)i

i! e−µv k′ = j + 1
0 ellers











= Pj,k′(v)

Therefore
PXn(j, k) =

∫ ∞
0 Pj,j−k+1(v) · fvn(v)dv

6.1

• Given that we have n males and m females,

Pr{male i meets female j turing time period h } = λh + o(h)

The number of offspring these two produce is then a Poisson process with rate λ, and
the waiting time before the first birth is

Tij ∼ exp(λ)

The waiting time before the first birth in the entire population is
T = min

i,j ∼ exp(n ·m · λ)
(There are n ·m combinations of males and females.)

• [i)]

In state {n,m} we have

v−1
{n,m} = E[Time in state {n,m} before moving on]

= E[T ]

=
1

nmλ
⇒ v{n,m} = nmλ

1.2. The probability of giving birth to a male and a female is equal, hence

P{n,m}, {n+1,m} = P{n,m}, {n,m+1} =
1

2
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Alternatively:

Pr{Male i does NOT meet female j during h} = 1− λh + o(h)

⇓

Pr{No male meets a female during h} = (1− λh + o(h))nm

= 1− nmλh + o(h)

= Pii(h)

We have that

νi = lim
h→0

1− Pii(h)

h
= lim

h→0

nmλh + o(h)

h
= nmλ

6.2

See solution in the book.

6.3

• Analyze by the number of machines not functioning, and get

BUT we can not analyze this any further as λ1 is dependent of which machine breakes
down first.
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• We can alternatively consider the states

Xt =























(0,0) - Both machines functioning
(1,0) - Machine 1 not functioning, M2 functioning.
(2,0) - Machine 2 not functioning, M1 functioning
(1,2) - M1 being repaird, M2 not functioning.
(2,1) - M2 being repaird, M1 not functioning.

• We get

P =













(0, 0) (1, 0) (2, 0) (1, 2) (2, 1)

(0, 0) 0 µ1

µ1+µ2

µ2

µ1+µ2
0 0

(1, 0) µ
µ+µ2

0 0 µ2

µ+µ2
0

(2, 0) µ
µ+µ1

0 0 0 µ1

µ+µ1

(1, 2) 0 0 1 0 0
(2, 1) 0 1 0 0 0













, v =













µ1 + µ2

µ2 + µ

µ1 + µ

µ

µ













6.4

See solution in the book.

Exercises from exams

Eksamen, mai ’03 oppg.2

a)

P{N(h) = 1} = P{NA(h)+NB(h) = 1} = P{(NA(h) = 1∩NB(h) = 0)∪(NA(h) = 0∩NB(h) = 1)}

= P{NA(h) = 1 ∩NB(h) = 0}+ P{NA(h) = 0 ∩NB(h) = 1} (disjoint events)

= P{NA(h) = 1}P{NB(h) = 0}+P{NA(h) = 0}P{NB(h) = 1} (as NA(h) and NB(h) are independent)

= (λAh + o(h))(1 − λBh + o(h)) + (1− λAh + o(h))(λBh + o(h))

= λAh− λAλBh2 + o(h) + λBh− λAλBh2 + o(h)

= (λA + λB)h + o(h) (as h2 is a o(h)-function).
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Showing that P{N(h) ≥ 2} = o(h) is easiest by first considering P{N(h) = 0}:

P{N(0) = 0} = P{NA(h) = 0 ∩NB(h) = 0} = P{NA(h) = 0}P{NB(h) = 0}

= (1− λAh + o(h))(1 − λBh + o(h))

= 1− λBh− λAh + λAλBh2 + o(h)

= 1− (λA + λB)h + o(h) (siden h2 er en o(h)-funksjon).

This gives
P{N(h) ≥ 2} = 1− P{N(h) = 0} − P{N(h) = 1}

= 1− (1− (λA + λB)h + o(h)) − ((λA + λB)h + o(h)) = o(h).

b)

Use that N(t) is a Poisson process with intensity λ = λA + λB = 3:

P{N(1) ≤ 2} = P{N(1) = 0}+ P{N(1) = 1}+ P{N(1) = 2}

=
λ0

0!
e−λ +

λ1

1!
e−λ +

λ2

2!
e−λ = e−λ(1 + λ +

1

2
λ2) = 0.423.

Use definition of conditional probability to get

P{NA(1) = 1|N(1) = 1} =
P{NA(1) = 1, N(1) = 1}

P{N(1) = 1}
=

P{NA(1) = 1, NB(1) = 0}

P{N(1) = 1}

=
P{NA(1) = 1}P{NB(1) = 0}

P{N(1) = 1}
(as NA(1) and NB(1) are independent)

=

λ1
A

1! e−λA ·
λ0

B

0! e−λB

λ1

1! e
−λ

=
λA

λA + λB
=

1

3
(as λ = λA + λB).

Use that N(t) = NA(t) + NB(t) to get

P{N(1) ≤ 2|NA(0.5) = 1} = P{NB(0.5) + (N(1) −N(0.5)) ≤ 1|NA(0.5) = 1}

= P{NB(0.5)+(N(1)−N(0.5)) ≤ 1} (as NA(0.5) is independent of NB(0.5) and N(1)−N(0.5))

= P{NB(0.5) = 0, N(1) −N(0.5) = 0}+ P{NB(0.5) = 1, N(1) −N(0.5) = 0}

+P{NB(0.5) = 0, N(1) −N(0.5) = 1}

= e−λB ·0.5 · e−λ·0.5 + λB · 0.5 · e
−λB ·0.5 · e−λ·0.5 + e−λB ·0.5 · λ · 0.5 · e−λ·0.5

= e−(λ+λB)·0.5(1 + 0.5 · λB + 0.5 · λ) = 0.2873.
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