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Problem 1

Consider the Markov chain whose transition probability matrix is given by

P =


0 1 2 3

0 0.4 0.3 0.2 0.1
1 0.2 0.2 0.2 0.4
2 0.25 0.25 0.5 0
3 0.2 0.1 0.4 0.3



a) • Assume that the initial state distribution for the Markov chain is

P (X0 = 0) = 1
2 , P (X0 = 1) = P (X0 = 2) = P (X0 = 3) = 1

6

Compute the unconditional probability P (X1 = 3).
• This Markov chain has a limiting distribution π = (π0, π1, π2, π3). How

can πi be interpreted? Mention two ways.

b) Derive the probability that state 3 is entered before state 2, if X0 = 0.
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Problem 2

Aliens from two planets (planet Zeeba and planet X) are arriving on Earth inde-
pendently according to Poisson processes {NZ(t); t ≥ 0} and {NX(t); t ≥ 0} with
parameters λZ and λX , respectively. The Extraterrestrials Arrival Registration
Service Authority (EARSA) will begin registering alien arrivals at t = 0. Assume
that NZ(0) = NX(0) = 0.

Let T1 denote the time EARSA will function until it registers its first alien. Let Z
be the event that the first alien to be registered is from planet Zeeba. Let T2 be the
time EARSA will function until at least one alien from both planets is registered.

For all following parts, you need to show and explain your derivations!

a) • What is the probability distribution of N(t) = NZ(t) +NX(t)? Express
P (N(1) ≤ 2) in terms of λZ and λX .
• Express µ1 = E(T1) in terms of λZ and λX .

b) • Express p = P (Z) in terms of λZ and λX .
• Assume λZ = 1 per month and λX = 2 per month. Determine the

probability that at least two of the first five arriving aliens are from
planet Zeeba.

c) Express µ2 = E(T2) in terms of λZ and λX .

d) Explain how you would check your result in part c) using simulations on
the computer. Be explicit enough so that someone else (who knows nothing
about stochastic processes) could implement it according to your instruc-
tions. You can also use pseudo-code.
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Problem 3

The PhD students of the statistics group at the Department of Mathematics at
NTNU would like to take part in a beach volleyball tournament. Unfortunately,
each member of the statistics team gets sporadically sick. Assume that the com-
plete team consists of n players. Further, assume that the time until a fit team
member gets sick is exponentially distributed with parameter µ (independently of
the state of the other players). On the other hand, the time until a sick team mem-
ber gets fit again to play volleyball is exponentially distributed with parameter λ
(independently of the state of the other players).

a) Model the situation described as a birth-death process, where the states
denote the number of players that are fit.
Sketch the transition graph and provide all birth and death rates.

b) Show that the probability that exactly i players are fit (in the long-run), is
given by

Pi =

(
n
i

)
ρi

(1 + ρ)n , i = 0, . . . , n,

where ρ = λ/µ.

(Hint: ∑n
i=0

(
n
i

)
xi = (1 + x)n.)

c) • Do the limiting probabilities Pi, i = 0, . . . , n, also exist, if λ ≥ µ? Please
explain.
• Assume that the statistics team has n = 5 players, and that λ−1 = 4

and µ−1 = 2. Calculate the probability that the statistics team cannot
participate at the tournament. (For participation at least two fit players
are required.)
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Problem 4

Suppose that you own one share of a stock whose price changes according to a
Brownian motion process {X(t), t ≥ 0} with variance parameter σ2 = 4. Assume
time is measured in months.

a) • Compute
P (X(13) ≥ 11 | X(9) = 8)

• Suppose that you purchased the share at a price of 14, and the present
time price is 11. You decide to sell the share either when it reaches the
price 14 or when 4 months go by (whichever occurs first). What is the
probability that you do not recover your purchase price?
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Formulas for TMA4265 Stochastic Processes:

The law of total probability

Let B1, B2, . . . be pairwise disjoint events with P (∪∞i=1Bi) = 1. Then

P (A|C) =
∞∑
i=1

P (A|Bi ∩ C)P (Bi|C),

E[X|C] =
∞∑
i=1

E[X|Bi ∩ C]P (Bi|C).

Discrete time Markov chains

Chapman-Kolmogorov equations

P
(m+n)
ij =

∞∑
k=0

P
(m)
ik P

(n)
kj .

For an irreducible and ergodic Markov chain, πj = limn→∞ P
(n)
ij exist and is given by

the equations
πj =

∑
i

πiPij and
∑
i

πi = 1.

For transient states i, j and k, the expected time spent in state j given start in state i,
sij , is

sij = δij +
∑
k

Pikskj .

For transient states i and j, the probability of ever returning to state j given start in
state i, fij , is

fij = (sij − δij)/sjj .

The Poisson process

The waiting time to the n-th event (the n-th arrival time), Sn, has the probability density

fSn(t) = λntn−1

(n− 1)!e
−λt for t ≥ 0.

Given that the number of events N(t) = n, the arrival times S1, S2, . . . , Sn have the joint
probability density

fS1,S2,...,Sn|N(t)(s1, s2, . . . , sn|n) = n!
tn

for 0 < s1 < s2 < . . . < sn ≤ t.
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Markov processes in continuous time

A (homogeneous) Markov process X(t), 0 ≤ t ≤ ∞, with state space Ω ⊆ Z+ =
{0, 1, 2, . . .}, is called a birth and death process if

Pi,i+1(h) = λih+ o(h)

Pi,i−1(h) = µih+ o(h)

Pi,i(h) = 1− (λi + µi)h+ o(h)

Pij(h) = o(h) for |j − i| ≥ 2

where Pij(s) = P (X(t + s) = j|X(t) = i), i, j ∈ Z+, λi ≥ 0 are birth rates, µi ≥ 0 are
death rates.

The Chapman-Kolmogorov equations

Pij(t+ s) =
∞∑
k=0

Pik(t)Pkj(s).

Limit relations
lim
h→0

1− Pii(h)
h

= vi , lim
h→0

Pij(h)
h

= qij , i 6= j

Kolmogorov’s forward equations

P ′ij(t) =
∑
k 6=j

qkjPik(t)− vjPij(t).

Kolmogorov’s backward equations

P ′ij(t) =
∑
k 6=i

qikPkj(t)− viPij(t).

If Pj = limt→∞ Pij(t) exist, Pj are given by

vjPj =
∑
k 6=j

qkjPk and
∑
j

Pj = 1.

In particular, for birth and death processes

P0 = 1∑∞
k=0 θk

and Pk = θkP0 for k = 1, 2, . . .

where
θ0 = 1 and θk = λ0λ1 · . . . · λk−1

µ1µ2 · . . . · µk
for k = 1, 2, . . .
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Queueing theory

For the average number of customers in the system L, in the queue LQ; the average
amount of time a customer spends in the system W , in the queue WQ; the service time
S; the average remaining time (or work) in the system V , and the arrival rate λa, the
following relations obtain

L = λaW.

LQ = λaWQ.

V = λaE[SW ∗Q] + λaE[S2]/2.

Some mathematical series

n∑
k=0

ak = 1− an+1

1− a ,
∞∑
k=0

kak = a

(1− a)2 .


