
TMA4265-Solution sketch - December exam

HS2014

December 18, 2014

Problem 1

a) – P (X1 = 3) =
∑3
i=0 P (X1 = 3 | X0 = i)P (X0 = i) = 1
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– The primary interpretation of π is

πj = lim
n→∞

Pnij

That means, after the process has been in operation for a long du-
ration, the probability of finding the Markov chain in state j is πj ,
irrespective of the initial state.

A second interpretation is that πi represents the long-run mean frac-
tion of time that the process is in state i.

b) Let ui = P (A | X0 = i), where A represent the event that state 3 is
entered before state 2. We have

u0 = 0.4u0 + 0.3u1 + 0.2u2 + 0.1u3

u1 = 0.2u0 + 0.2u1 + 0.2u2 + 0.4u3

u2 = 0

u3 = 1

so that

u0 = 0.4u0 + 0.3u1 + 0.1

u1 = 0.2u0 + 0.2u1 + 0.4

This leads to u1 = 1
4u0 + 1

2 . Setting this in the equation for u0, we get
u0 = 10

21 .
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Problem 2

a) – N(t) is a merged Poisson process of two independent Poisson pro-
cesses. Thus the rate of the merged process is given by the sum of
the individual rates, i.e the rate is λ = λZ + λX .

P (N(1) ≤ 2) = P (N(1) = 0) + P (N(1) = 1) + P (N(1) = 2)

=
λ0

0!
exp(−λ) +

λ1

1!
exp(−λ) +

λ2

2!
exp(−λ)

= exp(−λ)(1 + λ+
1

2
λ2)

– We consider again the process N(t) of arrivals of aliens from both
planets. Since this is a merged Poisson process with arrival rate
λ = λZ+λX , the time until the first arrival is therefore exponentially
distributed with parameter λ. Thus, µ1 = E(T1) = 1

λ = 1
λZ+λX

.

Alternatively, consider T1 = min(TZ1 , T
X
1 ) where TZ1 and TX1 are

the first arrival times of aliens from planet Zeeba and planet X, re-
spectively. Thus, TZ1 and TX1 are exponentially distributed with
parameters λZ and λX , respectively. The minimum is therefore
as well exponentially distributed with parameter λZ + λX , so that
µ1 = E(T1) = 1

λ = 1
λZ+λX

.

b) – We consider the same merged process as before, with arrival rate
λZ + λX . An arrival is with probability λZ

λZ+λX
from planet Zeeba

and with probability λX

λZ+λX
from planet X. The question asked for

P (Z) = λZ

λZ+λX
. Short proof:

P (Z) = P (NZ(t) = 1, NX(t) = 0 | N(t) = 1)

=
P (NZ(t) = 1) · P (NX(t) = 0)

P (N(t) = 1)

=
(λZ · t)1 exp(−λZt) · (λX · t)0 exp(−λXt)

((λX + λZ) · t)1 exp(−(λZ + λX) · t)

=
λZ

λX + λZ

– The number of aliens from planet Zeeba among the first 5 arriving
aliens follows a binomial distribution with parameters (5, P(Z)). The
reason is that all arrivals are independent and the probability that an
arriving alien is from planet Zeeba is constant. Thus, letting λZ = 1
and λX = 2 we get P (Z) = 1

3 and it follows:

1−
(

2

3

)5

− 5 ·
(

2

3

)4
1

3
= 0.539

c) The time T2 until at least one alien from planet Zeeba and one alien from
planet X has arrived can be expressed as T2 = max(TZ1 , T

X
1 ) where TZ1

and TX1 are the first arrival times of aliens from planet Zeeba and planet
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X, respectively. That mean, TZ1 and TX1 are exponentially distributed
with parameters λZ and λX , respectively.

The expected time until the first alien arrives was calculated in a), µ1 =
E(T1) = 1

λ = 1
λZ+λX

. To compute the remaining time we condition on
the 1st alien being from planet Zeeba (e.g. event Z) or planet X (event
ZC), and use

E(T2) = E(T1) + P (Z)E(time until first X-alien arrive | Z)+

P (ZC)E(time until first Zeeba-alien arrive | ZC)

= E(T1) + P (Z)E(TX1 ) + (1− P (Z))E(TZ1 )

=
1

λZ + λX
+

λZ
λZ + λX

(
1

λX

)
+

λX
λZ + λX

(
1

λZ

)
d) One potential algorithm:

– We need several simulations in order to get the expected value.

– In each simulation:

∗ we simulate the interarrival time from an exponential distribu-
tion with rate λZ + λX .

∗ we decide whether an arrival comes from Zeeba or planet X by
sampling from a Bernoulli distribution with probability P (Z).

∗ we stop as soon as we have seen both arrivals and return the
arrival time (sum of the interarrival times) of the last event.

– We compute the average over all returned arrival times.

Note: This solution is not unique!
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Problem 3

a) The transition graph is as follows

0 1 2 . . . n− 1 n

nλ (n− 1)λ (n− 2)λ 2λ λ

nµ(n− 1)µ3µ2µµ

The death rates are

µ0 = 0,

µi = iµ for i = 1, . . . , n

The birth rates are

λi = (n− i)λ, for i = 0, . . . , n− 1

λn = 0

Here we used that the minimum of i independent and exponentially dis-
tributed (with parameter λ) random variables is an exponentially dis-
tributed random variable with parameter iλ.

b) Let Pi denote the state of i in the long run, which is given by

Pi = θiP0

where

θi =
(nλ) · (n− 1)λ · · · (n− i+ 1)λ

µ · 2µ · · · iµ
=

(
n

i

)(
λ

µ

)i
Using that λ

µ = ρ, we have θi =
(
n
i

)
ρi. We further know that

P0 =
1∑n
i=0 θi

=
1∑n

i=0

(
n
i

)
ρi

=
1

(1 + ρ)n

Thus, it follows that

Pi =

(
n
i

)
ρi

(1 + ρ)n
.

c) – In general, if λ ≥ µ, an M/M/1 queue might grow infinitely and
therefore does not reach a stationary distribution. This cannot hap-
pen in this birth-and-death process, because the number of states is
bounded.

4



– We know that n = 5, λ−1 = 4 and µ−1 = 2, so that ρ = 1/2. We
calculate the probability that there are less than two fit players as

P0 + P1 =
1

(1 + ρ)5
(1 + 5 · ρ)

=

(
2

3

)5

· 7

2

=
32

243
· 7

2

=
224

486
≈ 0.46
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Problem 4

We have that {B(t) : t ≥ 0} is a standard Brownian motion, where B(t) = X(t)
2 .

Thus

a) – We have

P (X(13) ≥ 11 | X(9) = 8) = P (B(13) ≥ 11

2
| B(9) =

8

2
)

= P (B(13)−B(9) ≥ 5.5− 4 | B(9) = 4)

indep. increments
= P (B(13)−B(9) ≥ 1.5)

stat. increments
= P (B(4)−B(0) ≥ 1.5)

B(0)=0
= P (B(4) ≥ 1.5) = 1− Φ

(
1.5√

4

)
= 0.2266

– Let T1.5 denote the time to hit 1.5. We are interested in

P ( max
0≤s≤4

X(s) < 3) = 1− P ( max
0≤s≤4

X(s) ≥ 3)

= 1− P ( max
0≤s≤4

B(s) ≥ 3/2)

= 1− P (T1.5 ≤ 4)

= 1− [2

(
1− Φ

(
1.5√

4

))
] = 1− 0.4532 = 0.5468

The probability that you do not recover the purchase price is ≈ 0.55.
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