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Problem 1
a) = P(X1=3) = YL P =3 | Xo = )P(Xo =) = 375 + 515 +
610 — 6

— The primary interpretation of 7 is

m; = lim P
I S Y

That means, after the process has been in operation for a long du-
ration, the probability of finding the Markov chain in state j is 7,
irrespective of the initial state.

A second interpretation is that ; represents the long-run mean frac-
tion of time that the process is in state i.

b) Let u; = P(A | Xo = i), where A represent the event that state 3 is
entered before state 2. We have

ug = 0.4ug + 0.3uq + 0.2us + 0.1ug
Uy = 02U0 —+ 02U1 —+ 02U2 —+ 0.4U3
Ug = 0

U3:1

so that

ug = 0.4ug + 0.3u; + 0.1
up = 0.2ug + 0.2u; + 0.4

This leads to u; = iuo + % Setting this in the equation for ugy, we get
10
ug = 51



Problem 2

a) — N(t) is a merged Poisson process of two independent Poisson pro-
cesses. Thus the rate of the merged process is given by the sum of
the individual rates, i.e the rate is A = Az + Ax.

P(N(1) < 2) = P(N(1) = 0) + P(N(1) = 1) + P(N(1) = 2)
0 Al A2
= S exp(—A) + Srexp(—A) + Sp exp(—)

=exp(=\)(14+ X+ %/\2)

— We consider again the process N(t) of arrivals of aliens from both
planets. Since this is a merged Poisson process with arrival rate
A = Az + Ax, the time until the first arrival is therefore exponentially

distributed with parameter A. Thus, py = E(Ty) = § = ﬁ

Alternatively, consider Ty = min(T#,T;") where TZ and T{X are
the first arrival times of aliens from planet Zeeba and planet X, re-
spectively. Thus, TZ and T;* are exponentially distributed with
parameters Az and Ax, respectively. The minimum is therefore
as well exponentially distributed with parameter Az + Ax, so that

H1 = E(Tl) = % = AZ.;l.AX'
b) — We consider the same merged process as before, with arrival rate
Az + Ax. An arrival is with probability Az)fo from planet Zeeba

and with probability Az/\fo from planet X. The question asked for

P(Z) = A;‘TZ/\X Short proof:

Az -t exp(—Azt) - (Ax - t)° exp(—Axt)
(Ax +Az) - )lexp(—(Az +Ax) - 1)
CAx t+ Az

— The number of aliens from planet Zeeba among the first 5 arriving
aliens follows a binomial distribution with parameters (5, P(Z)). The
reason is that all arrivals are independent and the probability that an
arriving alien is from planet Zeeba is constant. Thus, letting Az =1
and Ax = 2 we get P(Z) = § and it follows:

1 35 5 241—0539
3 3) 3 7

¢) The time T5 until at least one alien from planet Zeeba and one alien from
planet X has arrived can be expressed as T = max(TZ,T{%) where TZ
and T}% are the first arrival times of aliens from planet Zeeba and planet



X, respectively. That mean, TZ and T;° are exponentially distributed
with parameters Az and Ax, respectively.

The expected time until the first alien arrives was calculated in a), pu; =

E(T) = % = ﬁ To compute the remaining time we condition on

the 1st alien being from planet Zeeba (e.g. event Z) or planet X (event
Z%), and use

E(Ty) = E(Ty) + P(Z)E(time until first X-alien arrive | Z)+
P(Z°)E(time until first Zeeba-alien arrive | Z¢)
= E(Th) + P(Z)E(T{) + (1 — P(2))E(T{)

A (L), e (1)
- Az + Ax Az +Ax \Ax Az +Ax \ Az

d) One potential algorithm:

— We need several simulations in order to get the expected value.
— In each simulation:

* we simulate the interarrival time from an exponential distribu-
tion with rate Az + Ax.

* we decide whether an arrival comes from Zeeba or planet X by
sampling from a Bernoulli distribution with probability P(Z).

* we stop as soon as we have seen both arrivals and return the
arrival time (sum of the interarrival times) of the last event.

— We compute the average over all returned arrival times.

Note: This solution is not unique!



Problem 3

a) The transition graph is as follows

nA (n— 1A (n—2)A 2\ A
OBOBOD
T 2p 3u (n—1)p e

The death rates are

.[1“0:07

The birth rates are

Ai = (n—10)A, fori=0,...,n—1
An =0

Here we used that the minimum of ¢ independent and exponentially dis-
tributed (with parameter \) random variables is an exponentially dis-
tributed random variable with parameter 7.

b) Let P; denote the state of 7 in the long run, which is given by
P =0,P

where

0, — (”)‘>'(”—1))\-~-(n—i+1))\: (n> (/\)z

M . 2# ... i/’L /L N
Using that % = p, we have §; = (?) p'. We further know that

_ 1

Z?:o 0;

_ 1
Yico ()P
_
(1+p)

Py =

Thus, it follows that

()¢’

R

¢) — In general, if A > p, an M/M/1 queue might grow infinitely and
therefore does not reach a stationary distribution. This cannot hap-
pen in this birth-and-death process, because the number of states is
bounded.



— We know that n = 5, A™' = 4 and p~! = 2, so that p = 1/2. We
calculate the probability that there are less than two fit players as

P0+P1: 5(1+5'p)

1
(1+p)



Problem 4
X(t)

We have that {B(t) : t > 0} is a standard Brownian motion, where B(t) = =5=.
Thus

a) — We have

P(X(13) > 11| X(9) = 8) = P(B(13) > L; | B(9) = %)
_ P(B(13) = B(9) > 55— 4| B(9) = 4)
indep. increments P(B(13) — B(9) > 1.5)
stat. ingements P(B<4) o B(O) Z 15)
PO= pBu)>15) =1-o (12)

= 0.2266

— Let T} 5 denote the time to hit 1.5. We are interested in
= — >
P(Or£3%<4X(s) <3)=1 P(OrélgélX(s) > 3)

=1-P(max B(s) = 3/2)
)

=1-P(Ths<4

=1-12 (1 - (1/2))] =1-0.4532 = 0.5468

The probability that you do not recover the purchase price is = 0.55.



