TMA4265 Stochastic Processes Week 38 - Solutions

Problem 4.10

This problem can be solved by making "glum mood" an absorbing state and then calculating the three-step transition probabilities. The modified transition probability matrix is

$$
\mathbf{P}=\left[\begin{array}{lll}
0.5 & 0.4 & 0.1 \\
0.3 & 0.4 & 0.3 \\
0.0 & 0.0 & 1.0
\end{array}\right]
$$

and the three-step transition probability matrix is

$$
\mathbf{P}^{3}=\left[\begin{array}{ccc}
0.293 & 0.292 & 0.415 \\
0.219 & 0.220 & 0.561 \\
0 & 0 & 1.000
\end{array}\right]
$$

The desired probability is then the probability of making a three-step transition from cheerful mood to either cheerful or so-so mood without being absorbed in the glum state, $0.293+0.292=0.585$.

4.16

See solution in the book

Exercise 1

Given a homogeneous Markov chain, where the transition matrix \mathbf{P} depends on a parameter p given by

$$
\mathbf{P}=\begin{gathered}
\\
1 \\
2 \\
3 \\
4
\end{gathered}\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0.2 & p & 0 & 0.8-p \\
0.3 & 0.7 & 0 & 0 \\
0 & 0.1 & 0.1 & 0.8 \\
0.1 & p & 0.1 & 0.8-p
\end{array}\right)
$$

For which value of p is the Markov chain not irreducible?

Solution

A Markov chain is called irreducible if all states are mutually accessible (communicate), i.e. the probability to get in finite number of steps from state i to
state j is positive for all states $i, j \in S$. In the example given here this property is not fulfilled for $p=0.8$, as state 3 and 4 cannot be reached from states 1 and 2.

Exercise 2

Consider a Markov chain whose transition probability matrix is given by

$$
\mathbf{P}=\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3
\end{aligned}\left(\begin{array}{cccc}
0 & 1 & 2 & 3 \\
1 & 0 & 0 & 0 \\
0.1 & 0.4 & 0.1 & 0.4 \\
0.2 & 0.1 & 0.6 & 0.1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Let $\left\{X_{n} ; n \geq 0\right\}$ be a Markov chain with the given transition probability and let $T=\min \left\{n \geq 0 \mid X_{n}=0\right.$ or $\left.X_{n}=3\right\}$ denote the time of absorption:
a) We are interested in $P\left(X_{T}=0 \mid X_{0}=1\right)$ and use a first-step analysis to find this quantity. Let $u_{i}=P\left(X_{T}=0 \mid X_{0}=i\right)$. Obviously $u_{0}=1$ and $u_{3}=0$. Further

$$
\begin{aligned}
u_{1} & =\sum_{j=0}^{3} u_{j} P_{1 j} \\
& =u_{0} P_{10}+u_{1} P_{11}+u_{2} P_{12} \\
& =0.1+0.4 u_{1}+0.1 u_{2} \\
u_{2} & =\sum_{j=0}^{3} u_{j} P_{2 j} \\
& =u_{0} P_{20}+u_{1} P_{21}+u_{2} P_{22} \\
& =0.2+0.1 u_{1}+0.6 u_{2}
\end{aligned}
$$

Solving this linear system of two equations in two variables gives $u_{1}=$ $P\left(X_{T}=0 \mid X_{0}=1\right) \approx 0.261$.
b) We are interested in $E\left(T \mid X_{0}=1\right)$ and use a first-step analysis to find the
desired quantity. Let $v_{i}=E\left(T \mid X_{0}=i\right)$ Obviously $v_{0}=v_{3}=0$. Further

$$
\begin{aligned}
v_{1} & =1+\sum_{j=0}^{3} v_{j} P_{1 j} \\
& =1+v_{1} P_{11}+v_{2} P_{12} \\
& =1+0.4 v_{1}+0.1 v_{2} \\
v_{2} & =1+\sum_{j=0}^{3} v_{j} P_{2 j} \\
& =1+v_{1} P_{21}+v_{2} P_{22} \\
& =1+0.1 v_{1}+0.6 v_{2}
\end{aligned}
$$

Solving this system gives the mean time of absorption starting in state 1, $v_{1}=E\left(T \mid X_{0}=1\right) \approx 2.17$.

