Exercise 1

Show that for a Poisson process $N=\{N(t), t \geq 0\}$ the following statement is valid:

$$
\mathrm{P}(N(s)=k \mid N(t)=n)=\binom{n}{k}\left(\frac{s}{t}\right)^{k}\left(1-\frac{s}{t}\right)^{n-k}, \quad \text { for } s<t
$$

Solution

Assume $s<t$ and assume the rate is λ, then by Bayes' law

$$
\mathrm{P}(N(s)=k \mid N(t)=n)=\frac{\mathrm{P}(N(s)=k, N(t)=n)}{\mathrm{P}(N(t)=n)}
$$

The condition specified in the nominator of the fraction can be stated as $N(s)=$ k and $N(t)-N(s)=n-k$ and we find

$$
\mathrm{P}(N(s)=k \mid N(t)=n)=\frac{\mathrm{P}(N(s)=k, N(t)-N(s)=n-k)}{\mathrm{P}(N(t)=n)}
$$

We use the independence of $N(s)$ and $N(t)-N(s)$ to find

$$
\begin{aligned}
\mathrm{P}(N(s)=k \mid N(t)=n) & =\frac{\mathrm{P}(N(s)=k) \cdot \mathrm{P}(N(t)-N(s)=n-k)}{\mathrm{P}(N(t)=n)} \\
& =\frac{\mathrm{e}^{-s \lambda} \cdot \frac{(\lambda s)^{k}}{k!} \cdot \mathrm{e}^{-(t-s) \lambda} \cdot \frac{(\lambda(t-s))^{n-k}}{(n-k)!}}{\mathrm{e}^{-t \lambda} \cdot \frac{(\lambda t)^{n}}{n!}} \\
& =\mathrm{e}^{-s \lambda-(t-s) \lambda+t \lambda} \cdot \lambda^{n-k+k-n} \cdot \frac{n!}{(n-k)!k!} \frac{s^{k} t^{k}}{t^{k}} \cdot \frac{(t-s)^{k}}{t^{k}} \\
& =\binom{n}{k}\left(\frac{s}{t}\right)^{k}\left(1-\frac{s}{t}\right)^{n-k}
\end{aligned}
$$

