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Problem 1

a)
P (X2 = 2, X1 = 1|X0 = 1) = P (X2 = 2|X1 = 1, X0 = 1)P (X1 = 1|X0 = 1)

= P (X2 = 2|X1 = 1)P (X1 = 1|X0 = 1) = 0.6 · 0.4 = 0.24

P (X2 = 2|X0 = 1) =
∑
k=12

P (X2 = 2|X1 = k)P (X1 = k|X0 = 1) = 0.6·0.4+0.4·0.6 = 0.48

The time until collapse is geometric distributed with ’success parameter P (4, 1) = 0.6.
The expectation is 1/P (4, 1) = 1/0.6 = 1.67.

b) Long-run distribution πj = limt→∞ P (Xt = j|X0 = i).
We have πj = ∑4

i=1 πiP (i, j).

π4 = π30.2 + π40.4
π3 = π20.5 + π30.4
π2 = π10.6 + π20.4
π1 = π10.4 + π20.1 + π30.4 + π40.6

3π4 = π3
0.6
0.5π3 = π2

π2 = π1

π1 = π10.4 + π20.1 + π30.4 + π40.6

Inserting the first three equations in the sum-to-one constraint gives
4∑
i=1

πi = π1(1 + 1 + 0.5
0.6 + 0.5

3 · 0.6 = 1

π1 = 1
1 + 1 + 0.83 + 0.83 · 0.33 = 0.32

π2 = 0.32
π3 = 0.32 · 0.83 = 0.27
π4 = 0.32 · 0.83 · 0.33 = 0.09
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P (Xt−1 = 4|Xt = 1) = P (Xt−1 = 4, Xt = 1)
P (Xt = 1)

= P (Xt−1 = 4)P (Xt = 1|Xt−1 = 4)
P (Xt = 1) = 0.09 · 0.6

0.32 = 0.16

c)
lim
t→∞

P (Xt = 1, Xt+1 = 2, Xt+2 = 3, Xt+3 = 4)

= π1P (Xt = 2|Xt−1 = 1)P (Xt = 3|Xt−1 = 2)P (Xt = 4|Xt−1 = 3)

= 0.32 · 0.6 · 0.5 · 0.2 = 0.0193 ≈ 0.02

This means there will be about 2 events like this in every 100 days.
In both displays there are 200 days. For the top plot there are direct increasing events
like this around time 55, 85, 105, 165. For the bottom plot they are around time 30, 65,
70, 125. This gives eight events in 400 days, which is what we would expect from the
theoretical result.

d) T = min{t;Xt = 4}.
ui = E(T |X0 = i), i = 1, 2, 3, u4 = 0.
Using double expectation in a first step analysis, we have

ui =
4∑
j=1

[E(T |X1 = j,X0 = i) + 1]P (i, j)

u1 = 1 + u10.4 + u20.6
u2 = 1 + u10.1 + u20.4 + u30.5
u3 = 1 + u10.4 + u30.4 + 0.2 · 0

u1 = 1/0.6 + u2

u2 = 1 + (1/0.6 + u2)0.1 + u20.4 + u30.5
u3 = 1 + u10.4 + u30.4 + 0.2 · 0
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u1 = 1.67 + u2

u2 = (1 + 0.167)/0.5 + u3

u2 − (1 + 0.167)/0.5 = 1 + (u2 + 1.67)0.4 + u20.4− (1 + 0.167)/0.50.4 + 0.2 · 0

We solve this for u2 to get:

u2 = (1 + 0.167)/0.5 + 1 + 1.67 · 0.4− (1 + 0.167)/0.5 · 0.4
1− 0.4− 0.4 = 3.07

0.2 = 15.33

u1 = 1.67 + u2 = 17.0

e) From Bayes theorem

P (Xt = k|yt = 3.2) = P (Xt = k)pYt|Xt=k(3.2|k)
pYt(3.2) ∝ πk exp

(
−(3.2− k)

2

)

π1 exp
(
−(3.2− 1)2

2

)
= 0.32 · 0.09 = 0.029

π2 exp
(
−(3.2− 2)2

2

)
= 0.32 · 0.49 = 0.157

π3 exp
(
−(3.2− 3)2

2

)
= 0.27 · 0.98 = 0.263

π4 exp
(
−(3.2− 4)2

2

)
= 0.09 · 0.73 = 0.065

The probability of risk class 4 is:

P (Xt = 4|yt = 3.2) = 0.065
0.029 + 0.157 + 0.263 + 0.065 = 0.13

Similarly,
P (Xt = 3|yt = 3.2) = 0.263

0.029 + 0.157 + 0.263 + 0.065 = 0.51

By using independence between Xt+1 and Yt, given Xt, the probability at the next time
t+ 1 is
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P (Xt+1 = 4|yt = 3.2) =
4∑

k=1
P (Xt = k,Xt+1 = 4|yt = 3.2)

=
4∑

k=1
P (Xt = k|yt = 3.2)P (Xt+1 = 4|Xt = k, yt = 3.2)

=
4∑

k=1
P (Xt = k|yt = 3.2)P (Xt+1 = 4|Xt = k)

= P (Xt = 3|yt = 3.2)P (3, 4) + P (Xt = 4|yt = 3.2)P (4, 4) = 0.51 · 0.2 + 0.13 · 0.4 = 0.15

Problem 2

a) λ = 0.5.
N(t) = number of customers in time (0, t). This is Poisson distributed with parameter
λt.

P (N(15) = 0) = exp(−λ5) = exp(−2.5) = 0.08

E(N(15)) = λ15 = 7.5

P (N(5) = 0|N(10) = 2) = P (N(5) = 0, N(10)−N(5) = 2)
P (N(10) = 2)

=
exp(−5λ) · (λ5)2

2 exp(−5λ)
(λ10)2

2 exp(−10λ)
= 0.25

The interpretation is that two independent events occur, and since they are uniformly
distributed within (0, 10), the chance that both occur within (5, 10) is 0.52 = 0.25.

b) Ci is amount spent by customer i.

X = C1 + . . .+ CN(t)

By double expectation:

E(X) = E(E(X|N(t) = n)) = E(C)E(N(t)) = 100 · λ60 · 8 = 24000
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By double variance:

V ar(X) = E(V ar(X|N(t) = n))+V ar(E(X|N(t) = n)) = V ar(C)E(N(t))+E(C)2V ar(N(t))

= 102 · λ60 · 8 + 1002 · λ60 · 8 = (1557)2

c) Arrivals are run by the Poisson process.

λi = λ

Departures are run by the Poisson process, but there are i customers that can leave, so
the rate is iµ.

µi = iµ

0 1 2 19 20

𝜆 𝜆 𝜆

20𝜇2𝜇𝜇

Figure 1: Transition diagram.

Define waiting time T = T2 + T1. T2 is exponential distributed with parameter 2µ, while T1 is
exponential distributed with parameter µ. The density of T is

fT (t) =
∫ t

0
fT2(s)fT1(t− s)ds =

∫ t

0
2µe−2µsµe−µ(t−s)ds

= e−µt2µ
∫ t

0
µe−µsds = e−µt2µ(−e−µt + 1)

= 2µe−µt − 2µe−2µt
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d) Long-run probabilities are Pi = limt→∞ P (N(t) = i).
By equating the rates out and rates in we get

P0λ = P1µ

P1(λ+ µ) = P0λ+ P22µ
. . . = . . .

P2020µ = P19λ

Pi = νi

i! P0, ν = λ/µ

P0 = 1∑20
i=0

νi

i!
= 1

exp(ν)FX(20)

Here, X is Poisson distributed with parameter ν = λ/µ = 0.5/0.0333 = 15. Then∑20
i=0

νi

i! = exp(ν)FX(20), where FX is the cumulative distribution function.
This gives

P20 = fX(20)
FX(20) = (0.917− 0.875)

0.917 = 0.045

E(N) =
20∑
i=0

iPi = P0

20∑
i=0

i
νi

i! = P0ν
19∑
i=0

νi

i!

19∑
i=0

νi

i! = exp(ν)
19∑
i=0

exp(−ν)ν
i

i! = exp(ν)FX(19)

E(N) = ν exp(ν)FX(19)
exp(ν)FX(20) = ν

FX(19)
FX(20) = 150.875

0.917 = 14.31.

e) Assume today’s cost per minute of parking is cmin. The expected long-run pay per
minute is
For the same income we get:

E(N)cmin = Enew(N)2cmin

Enew(N) = E(N)
2 = 7.155
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Here, we let λ∗ be the new arrival rate, which is used when computing the left hand
side. Since one assumes no capacity at the parking garage, the new probabilities are
approximated by

Pi = xi

i! P0, x = λ∗/µ, i = 0, 1, 2, . . .

P0 = 1∑∞
i=0

xi

i!
= 1

exp(x) = exp(−x)

These are the Poisson probabilities with parameter x = λ∗/µ.

Enew(N) =
∞∑
i=0

iPi = λ∗/µ, λ∗ = µ7.155 = 0.0333 · 7.155 = 0.238


