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Problem 1

There are risks of avalanche (masses of snow collapsing) several places in Norway.
The collapse of a very large snow mass could mean a damaging avalanche. We
here assume that the risk class (snow mass) is described by four categories: small
(1), medium (2), large (3) and very large (4). During winter, we assume that this
risk or snow mass will tend to be the same or grow, or the snow collapses. The
dynamic risk class Xt, for day t = 0, 1, 2, 3, .., is here modeled by a Markov chain
with transition matrix:

P =


1 2 3 4

1 0.4 0.6 0 0
2 0.1 0.4 0.5 0
3 0.4 0 0.4 0.2
4 0.6 0 0 0.4

,

where element P (i, j) = P (Xt = j|Xt−1 = i).

a)

Calculate P (X2 = 2, X1 = 1|X0 = 1).

Calculate P (X2 = 2|X0 = 1).

Assume the risk is very large. What is the distribution for the time until
collapse, and what is the expected time until it collapses?

b)

Calculate the long-run proportion for the different risk classes.

What is the probability that the risk was very large yesterday (time t− 1),
given that it is small today (time t).

c)

Calculate the long-run proportion of time the risk process moves directly
through the increasing risk classes, i.e. Xt = 1, Xt+1 = 2, Xt+2 = 3, Xt+3 =
4.

Figure 1 shows realizations of this risk process from two winters. Compare
the realized proportion of directly increasing risk classes with the theoretical
results.



Page 2 of 4 TMA4265 Stochastic Processes, December 1, 2016

Figure 1: Two realizations of the process for avalanche risk.

d)

Assume X0 = 1. Calculate the expected time until the risk class first reaches
state 4.

e)

At a particular location of interest, along a railroad line, one can measure
the risk with an automatic sensor. This measurement, denoted Yt, will not
give perfect information about the risk class Xt. It will be continuously
distributed, and dependent on the risk only at the day the measurement is
made. Given the risk classXt = k, the measurement distribution is Gaussian,
N(k, 1), i.e. the probability density function is

p(yt|Xt = k) = 1√
2π

exp
(
−(yt − k)2

2

)
.

The measurement is Yt = 3.2, what is the probability that the risk class is
Xt = 4?

The measurement is Yt = 3.2, what is the probability that the risk class at
time t+ 1 is very large?
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Problem 2

At a parking garage, the arrivals of customers follow a Poisson process with rate
λ = 0.5 (time t is in minutes).

a)

The garage opens at 8:00. What is the probability that no customer has
arrived by 8:05?

What is the expected number of customers arriving the first 15 minutes?

Given that two customers arrived during the first 10 minutes, what is the
probability that no customer arrived the first 5 minutes?

b)

Customers independently spend on average 100 kr for parking, with standard
deviation 10 kr.

Calculate the expected value of the total income at the garage during the
day (08:00-16:00).

Calculate the variance of the total income at the garage during the day
(08:00-16:00).

Consider next the more realistic situation where customers arrive and leave the
parking garage. We assume arrivals are independent according to the Poisson
process described above. We further assume customers independently spend an
exponential distributed time in the parking garage, with expectation 1/µ. We set
µ = 1/30 = 0.0333. The number of customers N(t) in the garage by time t can
then be modeled by a birth-and-death process. The maximum capacity of the
garage is Nmax = 20. If there are 20 in the garage, arriving customers will just
drive by the garage, without forming a queue.

c)

Find the birth and death rates of the process.

Draw a transition diagram for the process.

The garage is closing. They receive no more arriving customers, while the
customers who are in the garage leave at the rates described above. There
are two customers at closing time. Find the probability density of the waiting
time until the parking garage is empty.
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d)

Use long-run equality of process rates going in and out of states to find
expressions for the long-run probabilities of the process. Compute P20 =
limt→∞ P (N(t) = 20).

Compute the expected long-run number of customers in the garage; E(N).

(Hint: You can look up Poisson probabilities in a table. If X is Poisson
distributed with parameter ν, we have P (X = i) = e−ν ν

i

i! , i = 0, 1, 2, . . ..)

e)

For environmental reasons the authorities demand that garages must double
the pay per minute for parking. The owner of a garage thinks this will reduce
the arrival rate of costumers. One assumes that the customers on average
spend the same time as described above in the garage. One further assumes
that the parking capacity will never be reached in this case.

Find the new arrival rate that makes the expected long-term income stay
the same as before. (Take for granted an expectation E(N) as the solution
to exercise 2d.)
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Formulas for TMA4265 Stochastic Processes:

The law of total probability

Let B1, B2, . . . be pairwise disjoint events with P (∪∞i=1Bi) = 1. Then

P (A|C) =
∞∑
i=1

P (A|Bi ∩ C)P (Bi|C),

E[X|C] =
∞∑
i=1

E[X|Bi ∩ C]P (Bi|C).

Discrete time Markov chains

Chapman-Kolmogorov equations

P
(m+n)
ij =

∞∑
k=0

P
(m)
ik P

(n)
kj .

For an irreducible and ergodic Markov chain, πj = limn→∞ P
(n)
ij exist and is given by

the equations
πj =

∑
i

πiPij and
∑
i

πi = 1.

For transient states i, j and k, the expected time spent in state j given start in state i,
sij , is

sij = δij +
∑
k

Pikskj .

For transient states i and j, the probability of ever returning to state j given start in
state i, fij , is

fij = (sij − δij)/sjj .

The Poisson process

The waiting time to the n-th event (the n-th arrival time), Sn, has the probability density

fSn(t) = λntn−1

(n− 1)!e
−λt for t ≥ 0.

Given that the number of events N(t) = n, the arrival times S1, S2, . . . , Sn have the joint
probability density

fS1,S2,...,Sn|N(t)(s1, s2, . . . , sn|n) = n!
tn

for 0 < s1 < s2 < . . . < sn ≤ t.
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Markov processes in continuous time

A (homogeneous) Markov process X(t), 0 ≤ t ≤ ∞, with state space Ω ⊆ Z+ =
{0, 1, 2, . . .}, is called a birth and death process if

Pi,i+1(h) = λih+ o(h)

Pi,i−1(h) = µih+ o(h)

Pi,i(h) = 1− (λi + µi)h+ o(h)

Pij(h) = o(h) for |j − i| ≥ 2

where Pij(s) = P (X(t + s) = j|X(t) = i), i, j ∈ Z+, λi ≥ 0 are birth rates, µi ≥ 0 are
death rates.

The Chapman-Kolmogorov equations

Pij(t+ s) =
∞∑
k=0

Pik(t)Pkj(s).

Limit relations
lim
h→0

1− Pii(h)
h

= vi , lim
h→0

Pij(h)
h

= qij , i 6= j

Kolmogorov’s forward equations

P ′ij(t) =
∑
k 6=j

qkjPik(t)− vjPij(t).

Kolmogorov’s backward equations

P ′ij(t) =
∑
k 6=i

qikPkj(t)− viPij(t).

If Pj = limt→∞ Pij(t) exist, Pj are given by

vjPj =
∑
k 6=j

qkjPk and
∑
j

Pj = 1.

In particular, for birth and death processes

P0 = 1∑∞
k=0 θk

and Pk = θkP0 for k = 1, 2, . . .

where
θ0 = 1 and θk = λ0λ1 · . . . · λk−1

µ1µ2 · . . . · µk
for k = 1, 2, . . .
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Queueing theory

For the average number of customers in the system L, in the queue LQ; the average
amount of time a customer spends in the system W , in the queue WQ; the service time
S; the average remaining time (or work) in the system V , and the arrival rate λa, the
following relations obtain

L = λaW.

LQ = λaWQ.

V = λaE[SW ∗Q] + λaE[S2]/2.

Some mathematical series

n∑
k=0

ak = 1− an+1

1− a ,
∞∑
k=0

kak = a

(1− a)2 .


