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Notation

• T ∼ expon(λ) means that T is exponentially distributed with hazard rate
λ, i.e. has density

f(t) = λe−λt for t > 0

Properties of the exponential distribution

1. Let T ∼ expon(λ). Then

P (T > t+ s|T > s) = P (T > t)

This sais that the distribution of T is ”memoryless”, i.e. if a unit with life-
time T has reached the age s, the remaining lifetime is still exponentially
distributed with parameter λ.

In other words: Let Ts be remaining lifetime for a unit which has reached
the age s without failing. Then

P (Ts > t) = e−λt

i.e. also Ts is expon(λ).

2. Let T ∼ expon(λ) and let W = aT . Then W ∼ expon(λ/a).

3. Let Ti for i = 1, . . . , n be independent, with Ti ∼ expon(λi). Let further

W = min(T1, . . . , Tn).

Then W ∼ expon(
∑

n

i=1 λi).

4. In particular if T1, . . . , Tn are independent each with distribution expon(λ),
then W ∼ expon(nλ).

5. Let T1, . . . , Tn be independent each with distribution expon(λ). Let the
ordering of these be

T(1) < T(2) < · · · < T(n)

Then

nT(1), (n− 1)(T(2) − T(1)), (n− 2)(T(3) − T(2)), . . . ,

(n− i+ 1)(T(i) − T(i−1)), . . . , (T(n) − T(n−1))



are independent and identically distributed as expon(λ).

This result is given in Theorem D.4 page 584 (Theorem B.4 page 475)
in the book. The proof there uses transformations of multidimensional
distributions. A more intuitive proof is as follows:

Assume that n units are put on test at time 0. Potential lifetimes of these
are T1, . . . , Tn, and hence

T(1) = min(T1, . . . , Tn).

From point 4 follows that T(1) ∼ expon(nλ), and from this follows by
point 2 that nT(1) ∼ expon(λ).

After time T(1) there are n − 1 unfailed units. At time s = T(1) each of
these has by point 1 a remaining lifetime which is expon(λ). It follows
from this that we from time T(1) and onwards have the same situation as at
time 0, only that there are now n−1 instead of n units on test. Therefore
the time to next failure, T(2)−T(1), is distributed as the minimum of n−1
expon(λ) variables and hence is expon((n− 1)λ). Then again by point 2
we get that (n − 1)(T(2) − T(1)) is expon(λ). That (n − 1)(T(2) − T(1)) is
independent of nT(1) follows from point 1 which says that the distribution
of Ts is the same whatever s is.

This reasoning can be continued at time T(2) in an obvious fashion, and
we finish by concluding that T(n) − T(n−1) is expon(λ).

6. Let the situation be as in point 5. Total Time on Test (TTT) at the times
T(i) are,

Y1 ≡ T (T(1)) = nT(1)

Y2 ≡ T (T(2)) = nT(1) + (n− 1)(T(2) − T(1))

Y3 ≡ T (T(3)) = nT(1) + (n− 1)(T(2) − T(1)) + (n− 2)(T(3) − T(2))

...
...

Yn ≡ T (T(n)) = nT(1) + (n− 1)(T(2) − T(1)) + · · · (T(n) − T(n−1))

= T(1) + T(2) + · · ·T(n)

The result of point 5 is that Y1, Y2−Y1, . . . , Yn−Yn−1 are i.i.d. expon(λ).
But that means that the points Y1, Y2, . . . , Yn on a single time axis consti-
tute a Poisson process with intensity λ (since the ”times” between events
in a Poisson process are i.i.d. expon(λ)). This means in turn (by a
known result on Poisson processes) that conditionally given Yn = yn, the
Y1, . . . , Yn−1 will have the same distribution as the ordering of n − 1 in-
dependent variables which are uniform on (0, yn). (Intuitively this means
that if we know the time yn of the nth event in a Poisson process, then
the distribution of the n−1 first correspond to n−1 independent uniform
drawings in the interval (0, yn)).

Dividing by yn (and putting a capital letter for Yn), we obtain that under
the conditions of point 5, the vector

(

Y1

Yn
,
Y2

Yn
, . . . ,

Yn−1

Yn

)



has a distribution which corresponds to the ordering of n−1 independent
uniform variables on (0, 1).

This means that Barlow-Proschan’s test statistic,

W =
Y1

Yn
+
Y2

Yn
+ . . .+

Yn−1

Yn

under the null hypothesis of exponentiality has the same distribution as
the sum of n − 1 independent random variables which are uniform on
(0, 1). Thus

E(W ) =
n− 1

2
, V ar(W ) =

n− 1

12

since the expectation and variance of a uniform distribution on (0, 1) are,
respectively, 1/2 and 1/12. Note finally that for n large (presumably
will n ≥ 6 do) is W approximately normally distributed by the central
limit theorem. This makes it simple to compute approximate p-values for
Barlow-Proschan’s test.


