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Suppose we have right-censored survival data of the form (y1, δ1), . . . , (yn, δn), where the yi
are observed times and δi are the censoring indicators, with δi = 1 for an observed failure and
δi = 0 for a censored observation.

Consider the modeling of the lifetimes by a parametric distribution with probability density
f(t; θ) and survival function R(t; θ). Here θ may well be a vector, i.e. there may be more than
one unknown parameter in the model. In order to make statistical inference about θ we need the
likelihood function for θ based on our data.

The likelihood function is given by

L(θ) =
∏
i:δi=1

f(yi; θ)
∏
i:δi=0

R(yi; θ).

One parameter: exponential distribution

Suppose θ is a single parameter. As an example, assume exponential lifetimes, with

f(t; θ) =
1

θ
e−

t
θ , R(t; θ) = e−

t
θ .

Then we get

L(θ) =
1

θr
e−

s
θ , (1)

where

r =

n∑
i=1

δi = number of observed failures,

s =

n∑
i=1

yi = total time on test.

The log-likelihood is given by

l(θ) =def lnL(θ) = −r ln(θ)− s

θ
. (2)

The maximum likelihood estimator (MLE) θ̂ for θ is found by solving the likelihood equation

l′(θ) = 0.
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Here the equation is
l′(θ) = −r

θ
+

s

θ2
= 0

so the MLE for θ is
θ̂ =

s

r
. (3)

The general theory of maximum likelihood estimation tells us that θ̂ is approximately (more
precisely: asymptotically) unbiased, with a standard error (i.e. standard deviation) which can
be estimated as described in the following.

First we define the observed information about θ in θ̂,

I(θ̂) =def −l′′(θ̂),

the double derivative of the log likelihood, computed at the MLE θ̂.

The theory then says that we can estimate the variance of θ̂ by

V̂ ar(θ̂) =
1

I(θ̂)
.

In our example we have l′′(θ) = r
θ2
− 2s

θ3
, so the observed information is

I(θ̂) = −l′′(θ̂)

= − r

θ̂2
+

2s

θ̂3

= − r

( sr )2
+

2s

( sr )3

= −r
3

s2
+

2r3

s2

=
r3

s2

=
r

θ̂2

It follows that V̂ ar(θ̂) = 1
I(θ̂)

= θ̂2

r , so the estimated standard deviation of the estimator θ̂
(standard error) is

ŜD(θ̂) =

√
V̂ ar(θ̂) =

θ̂√
r
.
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Likelihood confidence interval and likelihood tests for θ

The log likelihood l(θ) can also be used to derive a confidence interval for θ. Likelihood theory
tells us that

W (θ) = 2
(
l(θ̂)− l(θ)

)
≈ χ2

1 (4)

if θ is the true value behind our data. Here χ2
1 means the chi-square distribution with 1 degree

of freedom.

Thus from a table of the χ2-distribution we conclude that

P (2
(
l(θ̂)− l(θ)

)
≤ 3.84) ≈ 0.95,

which can also be phrased as

P (l(θ) ≥ l(θ̂)− 1.92) ≈ 0.95.

Thus a confidence interval for θ can be found in the figure of page 74 in Slides 3 as the set of θ
for which l(θ) ≥ −12.63 − 1.92 = −14.55. This gives the interval from 2.1 to 12.8 which is
hence an approximate 95% confidence interval.

The result (4) can also be used to test the null hypothesis that θ has a prespecified value θ0, e.g.
θ0 = 10. Then under the null hypothesis, W (θ0) is approximately χ2

1 and we should then reject
the null hypothetsis if W (θ0) > 3.84 (if we use 5% significance level). With the same data as
above we get W (10) = 2(−12.63− (−13.81)) = 2.36, so we do not reject the hypothesis.

Note also that in general we can test H0 : θ = θ0 vs. H1 : θ 6= θ0 with significance level 5%
if we have a 95% confidence interval for θ. We then reject the null hypothesis if θ0 is not in the
confidence interval. In the case considered in the previous paragraph, it is easily seen that the
suggested test is of this kind.

Two parameters: Weibull distribution

Suppose now that there are two parameters in the model, and let us use the Weibull distribution
for illustration.

Now
f(t; θ, α) =

α

θα
tα−1e−(

t
θ
)α , R(t; θ, α) = e−(

t
θ
)α ,
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and the likelihood function and the log-likelihood functions become

L(θ, α) =
αr

θrα

( ∏
δi=1

yi

)α−1
e−

1
θα

∑n
i=1 y

α
i

l(θ, α) = r lnα− αr ln θ + (α− 1)
∑
i:δi=1

ln yi −
1

θα

n∑
i=1

yαi . (5)

The maximum likelihood estimators θ̂, α̂ are found by maximizing l(θ, α). In practice this is
done by solving the likelihood equations (two equations in two unknowns),

∂l(θ, α)

∂θ
= 0,

∂l(θ, α)

∂α
= 0.

This gives the equations

1.
∂l(θ, α)

∂θ
= −αr

θ
+

α

θα+1

n∑
i=1

yαi = 0

2.
∂l(θ, α)

∂α
=

r

α
− r ln θ +

n∑
i=1

δi ln yi −
n∑
i=1

(yi
θ

)α
ln
(yi
θ

)
= 0

Here we may for example solve eq. 1 for θ as a function of α and substitute this into eq. 2. From
eq. 1 we get

αr

θ
=

α

θα+1

n∑
i=1

yαi

θα =

∑n
i=1 y

α
i

r

θ =
(∑n

i=1 y
α
i

r

)1/α
.

Note that this solution is the maximum likelihood estimator of θ if the value of α is known. We
denote it by

θ̂(α) =
(∑n

i=1 y
α
i

r

)1/α
. (6)

In particular we see that if α = 1, then we get the estimator (3) of θ for the exponential model.
In fact, L(θ, 1) is seen to equal the likelihood function (1) for the exponential model.

As noted above, in order to find θ̂, α̂, we may substitute the solution θ̂(α) into equation 2 and
thereby get an equation with just one unknown, namely α. The solution of this is α̂, the MLE of
α, while θ̂ = θ̂(α̂) is the MLE of θ.
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The profile (log) likelihood function

We have shown how we in principle can find the MLE of θ and α. Now we shall see that we may
also use θ̂(α) in (6) to obtain a likelihood function for α alone, called the profile log likelihood
function. We then substitute θ̂(α) into the log likelihood function l(θ, α) to get

l̃(α) = l(θ̂(α), α) ≡ maxθl(θ, α).

In the computation of l̃(α) we thus answer the question: “How big can we get l(θ, α) for a given
α”? Note that l̃(1) = l(θ̂(1), 1) equals the maximum value of the log likelihood l(θ) in (2) for
the exponential distribution.

For the Weibull case we compute l̃(α) as follows,

l̃(α) = r lnα− αr ln
[(∑ yαi

r

)1/α]
+ (α− 1)

∑
δi ln yi −

1(∑ yαi
r

) n∑
i=1

yαi

= r lnα− αr 1

α
ln(
∑

yαi ) + αr
1

α
ln r + (α− 1)

∑
δiyi − r

= r lnα− r ln(
∑

yαi ) + r ln r + (α− 1)
∑

δi ln yi − r.

We may plot this as a function of α to get α̂ at the maximum of the curve. An example is given
on page 79 in Slides 3. Here α̂ = 0.978. Then we get θ̂ given as θ̂(α̂) = 6.880. Further, we
estimate the mean time to failure by

M̂TTF = θ̂ Γ(
1

α̂
+ 1) = 6.88 Γ(

1

0.978
+ 1) = 6.88Γ(2.0225) = 6.9469

where we used the formula for the expected value of the Weibull distribution.

Computation of standard errors of θ̂, α̂.

Recall that for the case of a single parameter θ we defined the observed information I(θ̂) =

−l′′(θ̂) and obtained the estimator V̂ ar(θ̂) = 1/I(θ̂).

In the case of two parameters θ and α we define the observed information matrix to be

I(θ̂, α̂) =def

[
−∂2l(θ,α)

∂θ2
−∂2l(θ,α)

∂θ∂α

−∂2l(θ,α)
∂α∂θ −∂2l(θ,α)

∂α2

]
θ=θ̂,α=α̂

This matrix is also known under the name of Hessian matrix.

5



The theory of maximum likelihood says that

[
I(θ̂, α̂)

]−1
=

 V̂ ar(θ̂) ̂Cov(θ̂, α̂)

̂Cov(α̂, θ̂) V̂ ar(α̂)


which means that by inverting the observed information matrix we get a matrix with the esti-
mated variances of the parameters on the diagonal. We furthermore get estimated covariances
outside the diagonal. These are used for computation of estimated variances of functions of both
θ and α.

From the estimated variances we compute standard errors by taking square roots, and we may
then compute either standard confidence intervals or standard confidence intervals for positive
parameters. The latter are given as

θ̂e±1.96
ŜD(θ̂)

θ̂ , α̂e±1.96
ŜD(α̂)
α̂

The inverse of the observed information matrix ca n also be used to compute standard errors and
confidence intervals for, e.g., MTTF, median and, more generally, percentiles tp. For this we
need the covariance of θ̂, α̂. We will not give details here, but only note that Minitab does the
computation for us!

Likelihood confidence interval for α

The profile log likelihood l̃(α) can be used in the same manner as the log likelihood for a single
parameter to obtain a confidence interval for α. More precisely, likelihood theory tells us that

W (α) = 2
(
l̃(α̂)− l̃(α)

)
≈ χ2

1 (7)

if α is the true value. Thus an approximate 95% confidence interval for α can be found in the
figure of page 79 in Slides 3 as the set of α for which l̃(α) ≥ −14.584− 1.92 = −16.50 (which
unfortunately is not covered by the graph).

Testing for exponentiality

The result (7) can also be used to test the null hypothesis that the data come from an exponential
distribution. This is done by testing

H0 : α = 1 vs. H1 : α 6= 1,
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and using the following test statistic:

W (1) = 2
(
l̃(α̂)− l̃(1)

)
which is approximately χ2

1 if the null hypothesis is true. Hence we reject the null hypothesis at
5% significance level if W (1) ≥ 3.84.

Note that
W (1) = 2

[
l(θ̂, α̂)︸ ︷︷ ︸

max value inWeibull model

− l(θ̂(1), 1)︸ ︷︷ ︸
max value in exponential model

]
where we can find the two maxima in the Minitab output for, respectively, Weibull-distribution
and exponential distribution. In the present case we get l(θ̂, α̂) = −14.576, and l(θ̂(1), 1) =

−14.577. Thus, W (1) = 2(−14.576 − (−14.577)) = 0.002 which is much too small to reject
the null hypothesis! The conclusion is hence that there is not enough evidence to conclude that
the data are not exponentially distributed.

Note that we may use the same idea as above to test for other values of α, i.e. we may test
H0 : α = α0 for any given number α0 by rejecting the null hypothesis if W (α0) ≥ 3.84. (But
then we will not find the value W (α0) so easily from the Minitab outputs.)

Probability plot for Weibull-distribution

Suppose T ∼Weibull(θ, α). Then we get

R(t) = e−
(
t
θ

)α
(8)

− lnR(t) =
( t
θ

)α
ln(− lnR(t)) = α ln t− α ln θ.

It follows from this that, for any t, the point
[

ln t, ln(− lnR(t))
]

is on the line

y = αx− α ln θ

which we here consider as a line in the “ordinary” (x, y) coordinate system. Thus α is the slope
of the line, while −α ln θ is the intercept.

Suppose now that we have a right-censored data set (y1, δ1), . . . , (yn, δn), where t(1) < . . . <

t(k) are the observed failure times (i.e. uncensored times). Then we can compute the Kaplan-
Meier estimator R̂(t) for R(t).

The Weibull probability plot is a plot of the points
[

ln t(i), ln(− ln R̂(t(i)))
]

in the (x, y) coordi-
nate system. If the Weibull model is the correct one, then these points will tend to be close to a
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straight line since R̂(t) then is supposed to be close to the underlying Weibull survival function
(8). If, on the other hand, the data are not Weibull-distributed, then R̂(t) may be far from a
Weibull survival function and consequently the points may not follow a straight line.

A modified KM-estimator is sometimes used, defined by

ˆ̂
R(t(i)) =

R̂(t(i)) + R̂(t(i−1))

2
.

This gives a somewhat more “smooth” KM-curve.

Minitab plots the points
[

ln t(i), ln(− ln
ˆ̂
R(t))

]
together with the straight line y = α̂x− α̂ ln θ̂,

where the α̂ and θ̂ are the estimated parameters based on a Weibull-distribution. The Weibull
model is hence considered to be a good model for the data if the points are close to this line.

Exponential Distribution

Minitab uses essentially the same probability plot for the exponential distribution as for the
Weibull distribution. But since α = 1 for the exponential distribution, the plotted line is y =

x− ln θ̂, where θ̂ is the estimate of θ obtained from the exponential model.

Remark on Minitab’s probability plots

Actually, a slightly different modified KM-estimator than the ˆ̂
R(t) is used as default by Minitab.

Further, Minitab plots a 95% confidence band around the estimated line to help in the judgement
of when the points are “close enough” to the line.
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