TMA4275 LIFETIME ANALYSIS

Slides 10: Estimation in log-location scale families; threshold models; exact confidence interval for type II censoring

Bo Lindqvist
Department of Mathematical Sciences
Norwegian University of Science and Technology
Trondheim

http://www.math.ntnu.no/~bo/bo@math.ntnu.no

NTNU, Spring 2015

CONTENTS OF SLIDES 10

- Log-location-scale families
 - Likelihood function
 - Observed information
 - Standard error
 - Percentiles
 - Probability plots
 - Data example: Shock absorber data
- Parametric models with threshold parameters
- Exact CI for type II censoring

LOG-LOCATION SCALE MODELS

A lifetime T has a log-location-scale family of distributions if I has a location-scale family i.e.

$$ln T = \mu + \sigma U$$

where U has a "standardized" distributions centered around 0, with values in $(-\infty, +\infty)$.:

- if $U \sim N(0,1)$, then $T \sim \text{lognormal}(\mu, \sigma)$
- if $U \sim logistic(0,1)$, then $T \sim log-logistic(\mu,\sigma)$
- if $U \sim Gumbel(0,1)$, then $T \sim Weibull(\theta, \alpha)$ with

$$\ln\theta=\mu,\ 1/\alpha=\sigma$$

TYPICAL DISTRIBUTIONS FOR U

Below are given, respectively, cdf and pdf of some "standardized" distributions, for $-\infty < u < \infty$.

Generic:
$$\Psi(u) = P(U \le u), \ \psi(u) = \Psi'(u)$$

Normal:
$$\Phi(u) = \int_{-\infty}^{u} \phi(x) dx$$
, $\phi(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2}$

Logistic:
$$H(u) = \frac{e^u}{1+e^u}, \ h(u) = \frac{e^u}{(1+e^u)^2}$$

Gumbel:
$$G(u) = 1 - e^{-e^u}$$
, $g(u) = e^{u - e^u}$

DISTRIBUTION OF T

Let T be distributed as a log-location-scale family with

$$\ln T = \mu + \sigma U$$

Then

$$F_{T}(t) = P(T \le t) = P(\ln T \le \ln t)$$

$$= P(\mu + \sigma U \le \ln t) = P(U \le \frac{\ln t - \mu}{\sigma})$$

$$= \Psi(\frac{\ln t - \mu}{\sigma})$$

Thus

$$R_T(t) = 1 - \Psi(\frac{\ln t - \mu}{\sigma})$$

and

$$f_{\mathcal{T}}(t) = \psi\left(\frac{\ln t - \mu}{\sigma}\right) \cdot \frac{1}{\sigma t}$$

LIKELIHOOD FUNCTION FOR RIGHT-CENSORED DATA

Likelihood for data from a general log-location-scale family:

$$L(\mu, \sigma) = \prod_{i:\delta_i=1} \psi\left(\frac{\ln y_i - \mu}{\sigma}\right) \cdot \frac{1}{\sigma y_i} \cdot \prod_{i:\delta_i=0} \left(1 - \Psi\left(\frac{\ln y_i - \mu}{\sigma}\right)\right)$$

and log-likelihood is

$$\ell(\mu,\sigma) = \sum_{i:\delta_i = 1} \left(\ln \psi \left(\frac{\ln y_i - \mu}{\sigma} \right) - \ln \sigma - \ln y_i \right) + \sum_{i:\delta_i = 0} \ln \left(1 - \Psi \left(\frac{\ln y_i - \mu}{\sigma} \right) \right)$$

VARIANCES AND STANDARD ERRORS OF ESTIMATORS

Same theory as for Weibull (θ, α) basically holds for the MLE $\hat{\mu}, \hat{\sigma}$ as regards standard deviation, confidence intervals, etc.

Now the **observed information matrix** is

$$I(\hat{\mu}, \hat{\sigma}) = \begin{bmatrix} -\frac{\partial^2 \ell(\mu, \sigma)}{\partial \mu^2} & -\frac{\partial^2 \ell(\mu, \sigma)}{\partial \mu \partial \sigma} \\ -\frac{\partial^2 \ell(\mu, \theta)}{\partial \mu \partial \sigma} & -\frac{\partial^2 \ell(\mu, \sigma)}{\partial \sigma^2} \end{bmatrix}$$

and

$$\left[I(\hat{\mu},\hat{\sigma})\right]^{-1} = \begin{bmatrix} \widehat{Var(\hat{\mu})} & \widehat{Cov(\hat{\sigma},\hat{\mu})} \\ \widehat{Cov(\hat{\mu},\hat{\sigma})} & \widehat{Var(\hat{\sigma})} \end{bmatrix}$$

EXAMPLE: SHOCK ABSORBER FAILURE DATA

These data are first reported in O'Connor (1985).

- Failure times, in *number of kilometers of use*, of vehicle shock absorbers.
- Two failure modes, denoted by MI and M2.
- One might be interested in the distribution of time to failure for mode MI, mode M2, or in the overall failure-time distribution of the part.

Here we do not differentiate between modes MI and M2. We will consider estimation of the distribution of time to failure by either mode MI or M2.

SHOCK ABSORBER FAILURE DATA

Shock absorber data

Y = kilometers to failure, F = failure mode (0 is censoring)

1					
Row	Y	F	19	14300	1
1	6700	1	20	17520	1
2	6950	0	21	17540	0
3	7820	0	22	17890	0
4	8790	0	23	18450	0
5	9120	2	24	18960	0
6	9660	0	25	18980	0
7	9820	0	26	19410	0
8	11310	0	27	20100	2
9	11690	0	28	20100	0
10	11850	0	29	20150	0
11	11880	0	30	20320	0
12	12140	0	31	20900	2
13	12200	1	32	22700	1
14	12870	0	33	23490	0
15	13150	2	34	26510	1
16	13330	0	35	27410	0
			36	27490	1
17	13470	0	37	27890	0
18	14040	0	38	28100	0

ANALYSIS BY MINITAB: LOGNORMAL DISTRIBUTION

Shock absorber data

Estimation Method: Maximum Likelihood Distribution: Lognormal

Parameter Estimates

		Standard	95,0% Normal CI	
Parameter	Estimate	Error	Lower	Upper
Location	10,1448	0,144175	9,86219	10,4273
Scale	0,530068			
		0,112683	0,349447	0,804047

Log-Likelihood = -124,609

Goodness-of-Fit Anderson-Darling (adjusted) = 34,651

Characteristics of Distribution

		Standard	95,0% Normal C	
	Estimate	Error	Lower	Upper
Mean(MTTF)	29297,5	5455,91	20338,3	42203,2
Standard Deviation	16687,1	6787,01	7519,35	37032,5
Median	25457,6	3670,36	19190,9	33770,7
First Quartile(Q1)	17805,2	2062,96	14188,1	22344,4
Third Quartile(Q3)	36399,0	7252,61	24631,2	53789,0
Interquartile Range(IQR)	18593,8	6115,60	9758,96	35426,9
				S 2 - S 3

SOME "HAND CALCULATIONS"

Estimates from MINITAB: $\hat{\mu}=10.1448$, and $\hat{\sigma}=0.530068$

$$\widehat{E(T)} \equiv \widehat{MTTF} = e^{\hat{\mu} + \frac{1}{2}\hat{\sigma}^2} = e^{10.1448 + \frac{1}{2} \cdot 0.530068^2} = 29297.5$$

$$\widehat{SD(T)} = \sqrt{e^{2\hat{\mu} + \hat{\sigma}^2} (e^{\hat{\sigma}^2} - 1)} = 16687.1$$

$$\widehat{Median}(T) = e^{\hat{\mu}} = 25457.6$$

$$\hat{t}_{0.25} = e^{\hat{\mu} - 0.67\hat{\sigma}} = 17805.2$$

$$\hat{t}_{0.75} = e^{\hat{\mu} + 0.67\hat{\sigma}} = 36399.0$$

See next page: $\hat{t}_p = e^{\hat{\mu} + \hat{\sigma} \Phi^{-1}(p)}$.

PERCENTILES t_p FOR LOG-LOCATION SCALE FAMILIES

Recall definition:

$$P(T \leq t_p) = p$$

$$p = P(T \le t_p) = P(\ln T \le \ln t_p) = \Psi(\frac{\ln t_p - \mu}{\sigma})$$

From this,

$$\Psi^{-1}(p) = \frac{\ln t_p - \mu}{\sigma}$$

$$\ln t_p = \mu + \sigma \Psi^{-1}(p)$$

$$t_p = e^{\mu + \sigma \Psi^{-1}(p)}$$

where $\Psi^{-1}(p)$ has to be calculated for each model, see next page.

t_p FOR SPECIAL CASES

T is **lognormal**: $\Phi^{-1}(p)$ is in our tables of standard normal distribution. Particular percentiles:

Median :
$$t_{0.5} = e^{\mu + \sigma \Phi^{-1}(0.5)} = e^{\mu}$$
 as $\Phi^{-1}(0.5) = 0$ $t_{0.25} = e^{\mu + \sigma \Phi^{-1}(0.25)} = e^{\mu - 0.675\sigma}$ $t_{0.75} = e^{\mu + \sigma \Phi^{-1}(0.25)} = e^{\mu + 0.675\sigma}$

T is **Weibull**: Here we need $G^{-1}(p)$. Solving $G(u) = 1 - e^{-e^u} = p$ we get $u = G^{-1}(p) = \ln(-\ln(1-p))$ and hence

$$\begin{array}{rcl} t_p & = & e^{\mu + \sigma \ln(-\ln(1-\rho))} = e^{\ln\theta + \frac{1}{\alpha}\ln(-\ln(1-\rho))} \\ & = & e^{\ln\theta + \ln[(-\ln(1-\rho))^{1/\alpha}]} \\ & = & \theta \cdot (-\ln(1-\rho))^{1/\alpha} \end{array}$$

(which we have derived earlier).

SPECIAL CASES (CONT.)

T is **log-logistic**: Here we need $H^{-1}(p)$. Solving $H(u) = \frac{e^u}{1+e^u} = p$ we get $u = H^{-1}(p) = \ln \frac{p}{1-p}$ and hence

$$t_p = e^{\mu + \sigma \cdot \ln \frac{p}{1-p}}$$

Median =
$$t_{0.5} = e^{\mu + \sigma \cdot \ln 1} = e^{\mu}$$

 $t_{0.25} = e^{\mu + \sigma \cdot \ln \frac{0.25}{0.75}} = e^{\mu - 1.0986\sigma}$
 $t_{0.75} = e^{\mu + 1.0986\sigma}$

SHOCK ABSORBER DATA, SEVERAL MODELS

Shock absorber data: Results for loglogistic (left), lognormal (middle), Weibull (right)

Table of Statistics		Table of	Table of Statistics		Table of Statistics	
Loc	10,1291	Loc	10,1448	Shape	3,16047	
Scale	0,280982	Scale	0,530068	Scale	27718,7	
Mean	28640,0	Mean	29297,5	Mean	24811,5	
StDev	17608,6	StDev	16687,1	StDev	8605,90	
Median	25062,8	Median	25457,6	Median	24683,6	
IQR	15720,2	IQR	18593,8	IQR	12048,5	
Failure	11	Failure	11	Failure	11	
Censor	27	Censor	27	Censor	27	
AD*	34,639	AD*	34,651	AD*	34,661	

PROBABILITY PLOTS FOR LOG-LOCATION-SCALE FAMILIES

$$F(t) = \Psi(\frac{\ln t - \mu}{\sigma})$$

$$\Psi^{-1}(F(t)) = \frac{\ln t - \mu}{\sigma} = \frac{1}{\sigma} \ln t - \frac{\mu}{\sigma}$$

Thus the points

$$(\ln t, \Psi^{-1}(F(t)))$$

are on the line

$$y = \frac{1}{\sigma}x - \frac{\mu}{\sigma}$$

For right-censored data we can estimate F(t) by $1 - \hat{R}(t)$, where $\hat{R}(t)$ is the KM-estimator, and then plot the points

$$(\ln t_{(i)}, \Psi^{-1}(1-\hat{R}(t_{(i)})))$$

together with the line

$$y = \frac{1}{\hat{\sigma}}x - \frac{\hat{\mu}}{\hat{\sigma}}$$

(As for Weibull, $\hat{R}(t)$ can be replaced by $\hat{R}(t)$.)

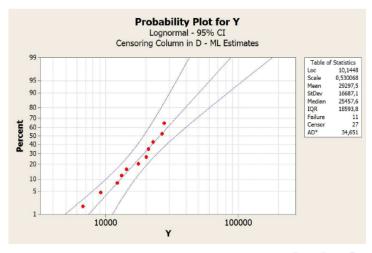
PROBABILITY PLOTS FOR SPECIAL CASES

- **Lognormal**: $\Phi^{-1}(p)$ is in statistical tables. Plot the points $(\ln t_{(i)}, \Phi^{-1}(1 \hat{R}(t_{(i)})))$
- Log-logistic: $H^{-1}(p) = \ln \frac{p}{1-p}$ Plot the points $(\ln t_{(i)}, \ln \frac{1-\hat{R}(t_{(i)})}{\hat{R}(t_{(i)})})$
- Weibull: $G^{-1}(p) = \ln(-\ln(1-p))$ Thus $G^{-1}(F(t)) = \ln(-\ln(1-F(t))) = \ln(-\ln R(t))$, so plot the points $(\ln t_{(i)}, \ln(-\ln \hat{R}(t_{(i)})))$

which is the same plot as derived earlier.

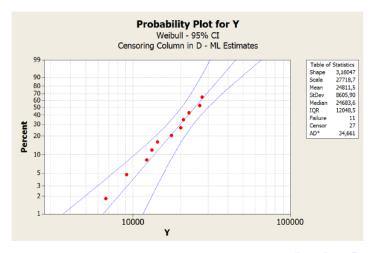
SHOCK ABSORBER DATA: LOGNORMAL

Shock absorber data



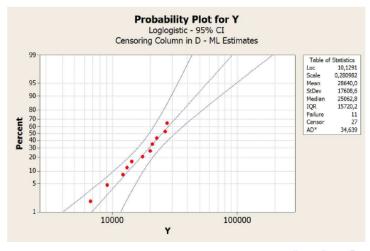
SHOCK ABSORBER DATA: WEIBULL

Shock absorber data



SHOCK ABSORBER DATA: LOG-LOGISTIC

Shock absorber data

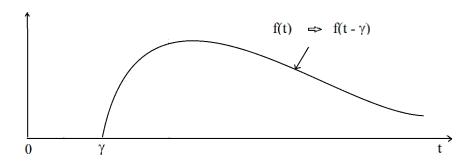


DISTRIBUTIONS WITH THRESHOLD PARAMETER

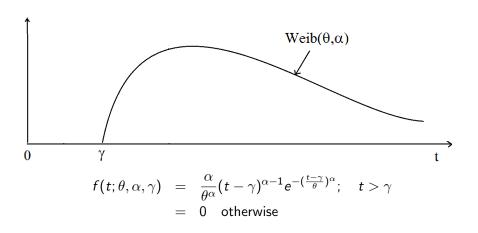
All distributions so far have been with positive densities from 0 and up. Threshold parameters $\gamma>0$ can be added, so that "old" density f(t); t>0, becomes "new" density

$$f(t-\gamma)$$
; $t>\gamma$

No failures can happen within the first γ time units, "guarantee time".



THREE-PARAMETER WEIBULL



$$R(t; \theta, \alpha, \gamma) = e^{-(\frac{t-\gamma}{\theta})^{\alpha}}; \quad t > \gamma$$

THREE-PARAMETER WEIBULL - LOG LIKELIHOOD

$$\ell(\theta, \alpha, \gamma) = r \ln \alpha - \alpha r \ln \theta + (\alpha - 1) \sum_{i:\delta_i = 1} \ln(y_i - \gamma) - \sum_{i=1}^n \left(\frac{y_i - \gamma}{\theta}\right)^{\alpha}$$

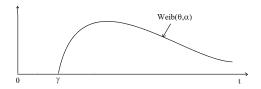
where $r = \sum_{i=1}^{n} \delta_i$ is the number of failures, and where $\gamma \leq \min y_i$.

Problem: log likelihood tends to ∞ if $\gamma=y_{(1)}$ (the smallest of the failure times) and $\alpha<1$. Then there is no maximum likelihood estimate of the parameters.

So one usually assumes $\alpha \geq 1$, in which case there may be solutions obtained by differentiation as usual, but where one also needs to check the value of $I(\theta,\alpha,\gamma)$ on the boundary of the parameter space, i.e. $\alpha=1$, in which case $\gamma=\min y_i$ is the maximizer for γ .

But - a profile log-likelihood may be the most "safe" procedure (see next slide).

THREE-PARAMETER WEIBULL - PROFILE LOG LIKELIHOOD



Profile log-likelihood of γ :

$$ilde{\ell}(\gamma) = \mathsf{max}_{ heta, lpha} \ell(heta, lpha, \gamma), \quad \gamma ext{ is fixed} \ = \ell(\hat{ heta}(\gamma), \hat{lpha}(\gamma), \gamma)$$

This is done for each γ by subtracting γ from all data and fitting an ordinary Weibull (θ, α) .

Then the ML estimator $\hat{\gamma}$ is the one that maximizes $\hat{\ell}(\gamma)$. The other ML estimates are $\hat{\theta}(\hat{\gamma}), \hat{\alpha}(\hat{\gamma})$.

Example: Pike (1966) data.

PIKE (1966) CANCER DATA FOR RATS

Pike (1966) cancer data for rats

Row	Y	D
1	143	1
2	164	1
3	188	1
4	188	1
5	190	1
6	192	1
7	206	1
8	209	1
9	213	1
10	216	1
11	220	1
12	227	1
13	230	1
14	234	1
15	246	1
16	265	1
17	304	1
18	216	0
19	244	0

Distribution Analysis: C1

Censoring value: C2 = 0

Variable: C1

Censoring Information Count
Uncensored value 17
Right censored value 2

Estimation Method: Maximum Likelihood

Distribution: 3-Parameter Weibull

Parameter Estimates

		Standard	95,0% Normal Cl		
Parameter	Estimate	Error	Lower	Upper	
Shape	2,71148	1,05876	1,26135	5,82878	
Scale	108,383	32,5734	60,1367	195,335	
Threshold	122.026	28.6924	65.7898	178,262	

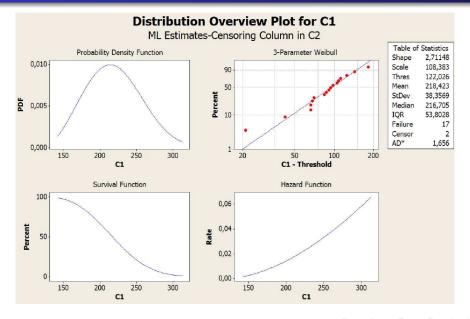
Log-Likelihood = -87,324

Goodness-ot-Fit Anderson-Darling (adjusted) = 1,656

Characteristics of Distribution

	Standard		95,0% Normal CI	
	Estimate	Error	Lower	Upper
Mean (MTTF)	218,423	8,99156	201,492	236,777
Standard Deviation	38,3569	6,41597	27,6352	53,2383
Median	216,705	9,89384	198,156	236,991
First Quartile(Q1)	190,481	9,63934	172,495	210,342
Third Quartile(Q3)	244,284	11,0118	223,627	266,849
Interquartile Range(IQR)	53,8028	8,97770	38,7945	74,6172

PIKE DATA (CONT.)

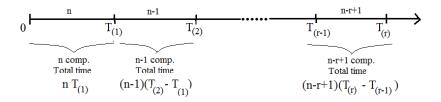


PIKE DATA PROFILE LOG LIKELIHOOD

Pike 3-parameter Weibull: Profile log likelihood for γ

)

EXACT CONFIDENCE INTERVAL FOR EXPONENTIAL DISTRIBUTION AND TYPE II CENSORING



n units put on test at time t = 0. Stop after a given number *r* of failures.

$$\hat{\theta} = \frac{\sum_{i=1}^{n} Y_{i}}{r} = \frac{\sum_{i=1}^{r} T_{(i)} + (n-r)T_{r}}{r} = \frac{"TTT"}{r}$$

$$= \frac{U_{1} \sim expon(1/\theta)}{nT_{(1)}} + \frac{U_{2} \sim expon(1/\theta)}{(n-1)(T_{(2)} - T_{(1)})} + \cdots + \frac{(n-r+1)(T_{(r)} - T_{(r-1)})}{r}$$

$$= \frac{U_{1} + U_{2} + \cdots + U_{r}}{r}$$

EXACT CONFIDENCE INTERVAL (CONT.)

From introductory courses it is known that for $U_i \sim \mathsf{expon}(1/\theta)$ then

$$\frac{2U_i}{\theta} \sim \chi_2^2$$

Thus,

$$\frac{2r}{\theta}\hat{\theta} = \frac{2\sum_{i=1}^{r} U_i}{\theta} \sim \chi_{2r}^2$$

Hence, in table of χ^2_{2r} , we find a, b so that

$$P(a < \frac{2r}{\theta}\hat{\theta} < b) = 0.95$$

$$P(\frac{2r\hat{\theta}}{b} < \theta < \frac{2r\hat{\theta}}{a}) = 0.95$$

An exact 95% confidence interval for θ for type II censoring and exponential distribution is hence

$$\left(\frac{2r\hat{\theta}}{b}, \frac{2r\hat{\theta}}{a}\right), \text{ or } \left(\frac{2TTT}{b}, \frac{2TTT}{a}\right)$$

EXACT CONFIDENCE INTERVAL - EXAMPLE

Confidence Interval for the Mean Life of a New Insulating Material

- A life test for a new insulating material used 25 specimens which were tested simultaneously at a high voltage of 30 kV.
- The test was run until 15 of the specimens failed.
- The 15 failure times (hours) were recorded as:

Then
$$TTT = 1.08 + \cdots + 47.80 + 10 \times 47.80 = 950.88$$
 hours.

ullet The ML estimate of heta and a 95% confidence interval are:

GENERAL RIGHT CENSORING APPROXIMATE CI - EXAMPLE

Note: The interval is an exact 95% confidence interval in the case of type II censoring for given r.

It turns out that the interval is often a very good approximate 95% confidence interval also for general right censoring.

In our earlier example with $r = 5, \sum Y_i = 23$

$$\big(\frac{2 \cdot 23}{\underbrace{20.483}}, \frac{2 \cdot 23}{\underbrace{3.247}} \big) \\ \text{0.025 in } \chi^2_{10} \text{ 0.975 in } \chi^2_{10}$$

(2.2458, 14.1669)