# TMA4275 LIFETIME ANALYSIS Slides 16: Trend testing for NHPP. Brief introduction to RP

## Bo Lindqvist Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim

http://www.math.ntnu.no/~bo/ bo@math.ntnu.no

NTNU, Spring 2015

## **CONTENTS OF SLIDES 16**

- Trend in the ROCOF of an NHPP
- Tests for trend in single systems
  - The Laplace test
  - The Military Handbook test
- Tests for trend in multiple systems
  - The pooled Laplace test
  - The pooled Military Handbook test
- The TTT-concept for repairable systems
  - TTT-based tests for trend
  - TTT-plot for repairable systems
  - Real data examples with MINITAB
- Brief introduction to renewal processes

## TREND TESTING FOR NHPP

Consider an NHPP with intensity (ROCOF) w(t).

Can see "trend" of w(t) by considering W(t):

- if W(t) is **convex**, then  $w(t) \nearrow$
- if W(t) is **concave**, then  $w(t) \searrow$
- if W(t) is linear, then w(t) is constant (so we have an HPP).

Trend tests are tests for:

 $H_0: w(t)$  is constant

versus, alternatives such as

$$H_1 : w(t) \nearrow$$

$$H_1 : w(t) \searrow$$

$$H_1 : w(t) \text{ is not constant}$$

# THE LAPLACE TEST

Basic result for an HPP on the interval  $[0, \tau]$ , with events at  $S_1, S_2, \ldots, S_N$ :

Given N = n, the n events are distributed uniformly on the interval  $[0, \tau]$ , i.e. they are the orderings of n independent variables, uniformly distributed on  $[0, \tau]$ .

These variables have mean equal to  $\tau/2$  and variance  $\tau^2/12$ . Thus

$$\sum_{i=1}^n S_i \approx N(n\tau/2, n\tau^2/12)$$

Thus

$$W = \frac{\sum_{i=1}^{n} S_i - n\tau/2}{\tau \sqrt{n/12}} = \frac{\sum_{i=1}^{n} (S_i - \tau/2)}{\tau \sqrt{n/12}} \approx N(0, 1)$$

This is the test statistic of the Laplace test!

Why is this a reasonable test statistic, and for which values of W should we reject the null hypothesis?

Bo Lindqvist Slides 16

# MOTIVATION FOR THE LAPLACE TEST

Recall

$$W = \frac{\sum_{i=1}^{n} (S_i - \tau/2)}{\tau \sqrt{n/12}}$$

Now:

- If H<sub>1</sub> : w(t) ≯, then most failures are above τ/2, and W has a tendency to be large and positive.
- If H<sub>1</sub>: w(t) ∖, then most failures are below τ/2, and W has a tendency to be small and negative.
- If  $H_1: w(t)$  is not constant, then
  - if the alternative is that of a *monotone* w(t), the W has a tendency to be either too large or too small
  - if the alternative is, e.g., a bathtub w(t), then W may still be moderate, so that the test is not good in this case!

## TREND TESTING IN SIMPLE EXAMPLE WITH THREE SYSTEMS

• system 1: 
$$W_1 = \frac{(5-10)+(12-10)+(17-10)}{20\sqrt{3/12}} = \frac{4}{20\sqrt{3/12}} = 0.40$$
  
• system 2:  $W_2 = \frac{(9-15)+(23-15)}{30\sqrt{2/12}} = 0.1633$   
• system 3:  $W_3 = \frac{4-5}{10\sqrt{1/12}} = -0.3464$   
Sys. 1:  $0 \qquad S_{11} = 5 \qquad S_{21} = 12 \qquad S_{31} = 17 \quad \tau_1 = 20$   
Sys. 2:  $0 \qquad S_{12} = 9 \qquad S_{22} = 23 \qquad \tau_2 = 30$   
Sys. 3:  $0 \qquad S_{13} = 4 \qquad \tau_3 = 10$   
Proj:  $0 \qquad 4 \ 5 \qquad 9 \qquad 12 \qquad 17 \qquad 23 \qquad t$   
Y(t):  $Y(t) = 3 \qquad Y(t) = 2 \qquad Y(t) = 1$ 

Bo Lindqvist

Basic result for an HPP stopped at the *n*th event, for a given *n*, with events at  $S_1, S_2, \ldots, S_n$ :

Given the value  $S_n = s_n$ , the n - 1 first events are distributed uniformly on the interval  $[0, s_n]$ , i.e. they are the orderings of n - 1 independent variables, uniformly distributed on  $[0, s_n]$ .

This leads to the test statistic

$$W = \frac{\sum_{i=1}^{n-1} (S_i - S_n/2)}{S_n \sqrt{(n-1)/12}}$$

which is approximately N(0,1) under the null hypothesis of HPP.

## A PRELIMINARY RESULT

Now use the following result:

If  $S \sim U[0, \tau]$ , then

$$Z = 2\ln\frac{\tau}{S} \sim \chi_2^2$$

which is proved as follows:

$$P(Z \le z) = P(2 \ln \frac{\tau}{S} \le z)$$
$$= P(\ln \frac{\tau}{S} \le \frac{z}{2})$$
$$= P(\frac{\tau}{S} \le e^{\frac{z}{2}})$$
$$= P(S \ge \tau e^{-\frac{z}{2}})$$
$$= 1 - e^{-\frac{z}{2}}$$

Thus 
$$f_Z(z) = \frac{1}{2}e^{-\frac{z}{2}} \sim \chi_2^2$$

< A</li>

► < Ξ ►</p>

The test statistic is

$$Z = 2\sum_{i=1}^{n} \ln \frac{\tau}{S_i} \sim \chi_{2n}^2 \text{ under } H_0 \text{ (time censoring at } \tau\text{)}$$
  

$$Z = 2\sum_{i=1}^{n-1} \ln \frac{S_n}{S_i} \sim \chi_{2(n-1)}^2 \text{ under } H_0 \text{ (failure censoring at } n \text{th failure)}$$

(the distributions under  $H_0$  are exact distribution, not only "approximately")

# MOTIVATION FOR THE MILITARY HANDBOOK TEST

Recall

$$Z = 2\sum_{i=1}^{n} \ln \frac{\tau}{S_i}$$

Now:

- If  $H_1: w(t) \nearrow$ , then many of the  $\tau/S_i$  are close to 1, and hence Z has a tendency to be small (note  $\ln 1 = 0$ ).
- If  $H_1: w(t) \searrow$ , then many of the  $S_i$  are small, so many of the  $\tau/S_i$  are large, and hence Z has a tendency to be large.
- If  $H_1: w(t)$  is not constant, then
  - if the alternative is that of a *monotone* w(t), the Z has a tendency to be either too large or too small
  - if the alternative is, e.g., a bathtub w(t), then Z may still be moderate, so that the test is not good in this case!

Recall: This system has failures at 5, 12, 17; time censoring at  $\tau = 20$ .

$$Z = 2(\ln\frac{20}{5} + \ln\frac{20}{12} + \ln\frac{20}{17}) = 5.14$$

If  $H_0$  holds (HPP), then  $Z \sim \chi_6^2$  (i.e. E(Z) = 6), so the tendency is towards "small" value, i.e. increasing w(t).

BUT: If  $H_1: w(t) \nearrow$ , then we should reject at 5% level if  $Z < \chi_6^2(0.05) = 1.64$ , so we are frar from rejecting the HPP!

Suppose we have *m* processes which each are NHPPs

- $H_0$ : the *m* processes are all HPP.
- $H_1$ : the *m* processes have increasing trend (at least one of them); or
- $H_1$ : the *m* processes have decreasing trend (at least one of them); or
- $H_1$ : not all of the *m* processes are HPP.



æ

#### THE POOLED LAPLACE TEST

Under the null hypothesis of m HPP, we have for each j:

Given  $N_j = n_j$ , the  $S_{1j}, \dots, S_{n_j j}$  are orderings of  $n_j$  uniforms on  $(0, \tau_j)$ . Thus,  $E(S_{ij}) = \frac{\tau_j}{2}$ ,  $Var(S_{ij}) = \frac{\tau_j^2}{12}$ .

The pooled Laplace test is defined by the test statistic

$$W_{pooled} = \frac{\sum_{j=1}^{m} \sum_{i=1}^{n_j} S_{ij} - E\left[\sum_{j=1}^{m} \sum_{i=1}^{n_j} S_{ij}\right]}{\sqrt{Var\left[\sum_{j=1}^{m} \sum_{i=1}^{n_j} S_{ij}\right]}}$$

Here  $E[\sum_{j=1}^{m} \sum_{i=1}^{n_j} S_{ij}] = \sum_{j=1}^{m} \sum_{i=1}^{n_j} \frac{\tau_j}{2} = \sum_{j=1}^{m} \frac{n_j \tau_j}{2}$   $Var[\sum_{j=1}^{m} \sum_{i=1}^{n_j} S_{ij}] = \sum_{j=1}^{m} \sum_{i=1}^{n_j} \frac{\tau_j^2}{12} = \sum_{j=1}^{m} \frac{n_j \tau_j^2}{12}$   $\Rightarrow W_{pooled} = \frac{\sum_{j=1}^{m} \sum_{i=1}^{n_j} S_{ij} - \sum_{j=1}^{m} \frac{n_j \tau_j}{2}}{\sqrt{\sum_{j=1}^{m} \frac{n_j \tau_j^2}{12}}} \approx N(0, 1) \quad \text{under } H_0$ 

# POOLED LAPLACE TEST FOR SIMPLE SYSTEMS

$$W_{pooled} = \frac{5 + 12 + 17 + 9 + 23 + 4 - \frac{1}{2}(3 \cdot 20 + 2 \cdot 30 + 1 \cdot 10)}{\sqrt{\frac{1}{12}[3 \cdot 20^2 + 2 \cdot 30^2 + 1 \cdot 10^2]}}$$
$$= \frac{70 - 65}{\sqrt{\frac{1}{12}[3100]}}$$
$$= \frac{5}{\sqrt{\frac{3100}{12}}}$$
$$= 0.3111$$

*p*-value for a test of "all HPP" vs "not all HPP" is  $2 \cdot P(W \ge 0.3111) = 2 \cdot 0.378 = 0.756.$ 

**Note**: This test is in fact a test of the null hypothesis that processes are all HPP's but possibly with different individual hazards.

Bo Lindqvist

# THE POOLED MILITARY HANDBOOK TEST

Under the null hypothesis of *m* HPP, we have for each *j*:  $Z_{ij} = 2 \sum_{i=1}^{n_j} \ln \frac{\tau_j}{S_{ii}} \sim \chi^2_{2n_j}$ . This suggests to define

$$Z_{pooled} = \sum_{j=1}^{m} \underbrace{\sum_{i=1}^{n_j} 2 \ln \frac{\tau_j}{S_{ij}}}_{\chi^2_{2n_j}} \sim \chi^2_{2n}$$

where  $n = \sum_{j=1}^{m} n_j$ .

Can write simply  $Z_{pooled} = \sum_{j=1}^{m} Z_{ij}$ .

#### IN SIMPLE EXAMPLE:

$$Z_{pooled} = 2\left(\ln\frac{20}{5} + \ln\frac{20}{12} + \ln\frac{20}{17}\ln\frac{30}{9} + \ln\frac{30}{23} + \ln\frac{10}{4}\right) = 8.89$$
  
Under  $H_0: Z_{pooled} \sim \chi^2_{12}$ , so P-value is  $2P(\chi^2_{12} \le 8.89) = 0.5754$ 

#### (Use parametric repairable systems analysis).

#### Trend Tests

|                | MIL-Hdbk-189 |        | Laplace's |        |                  |
|----------------|--------------|--------|-----------|--------|------------------|
|                | TTT-based    | Pooled | TTT-based | Pooled | Anderson-Darling |
| Test Statistic | 9,59         | 8,89   | 0,12      | 0,31   | 0,24             |
| P-Value        | 0,697        | 0,576  | 0,906     | 0,756  | 0,977            |
| DF             | 12           | 12     |           |        |                  |

< 17 ▶

∃ ► < ∃ ►</p>

# TTT-BASED TREND TESTS

#### MINITAB also reports a TTT-based test, based on the article:



PII: S 0 9 5 1 - 8 3 2 0 (9 7 ) 0 0 0 9 9 - 9

Reliability Engineering and System Safety 60 (1998) 13-28 © 1998 Elsevier Science Limited All rights reserved. Printed in Northern Ireland 0951-832098/\$19.00

# TTT-based tests for trend in repairable systems data

#### Jan Terje Kvaløy & Bo Henry Lindqvist

Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7034 Trondheim, Norway

(Received 25 September 1996; revised 24 January 1997; accepted 15 July 1997)

This is for the for the null hypothesis that *all* the *m* processes are HPP with the *same* intensity.

# TTT-BASED TREND TESTS

 $H_0$ : the individual processes are  $HPP(\lambda)$ , with the same  $\lambda$ .

This is done by constructing a single process based on all data, which is HPP( $\lambda$ ) if  $H_0$  holds.

This construction is based on the Total Time on Test (TTT) idea and can be illustrated by the simple example with 3 systems:



The idea is that - on the lower axis - time is running proportional to the number of processes under observation. The "failure" times on that axis forms an HPP( $\lambda$ ) under  $H_0$ .

# TTT-BASED TREND TESTS IN SIMPLE EXAMPLE

TTT-based Laplace-tests and Mil Hbk tests are obtained by first constructing the TTT-process and then applying the corresponding tests for single systems.

For the simple example we get for the TTT-based Laplace test:

$$W_{TTT} = \frac{12 + 15 + 27 + 34 + 44 + 53 - 6 \cdot 30}{60\sqrt{6/12}} = 0.1179$$

so a two-sided p-value is  $2 \cdot P(N(0,1) > .1179) = 0.906$  (check also earlier MINITAB-output!), so there is no reason to reject the null hypothesis.

The corresponding Mil Hbk test gives:

$$Z_{TTT} = 2(6 \ln 60 - (\ln 12 + \ln 15 + \ln 27 + \ln 34 + \ln 44 + \ln 53)) = 9.59$$

Hence the two-sided p-value is  $2 \cdot P(\chi_{12}^2 < 9.59) = 0.696$  (check MINITAB). Again there is no reason to reject the null hypothesis.

# TTT-PLOT FOR REPAIRABLE SYSTEMS

Consider *m* systems observed over possibly different time lengths  $\tau_j$ , and let Y(t) be the number of systems observed at time *t*.

The Total Time on Test at time t is defined by  $\mathcal{T}(t) = \int_0^t Y(u) du$ . The figure below shows how  $\mathcal{T}(t)$  develops in the simple example.



The TTT-process transfers the projected failure times  $S_1, S_2, \dots, S_n$  on  $[0, \tau_{max}]$  on the upper axis to  $\mathcal{T}(S_1), \mathcal{T}(S_2), \dots, \mathcal{T}(S_n)$  on the interval  $[0, \mathcal{T}(\tau_{max})]$  on the lower axis.

# TTT-PLOT FOR REPAIRABLE SYSTEMS

Plot

$$\left(rac{i}{n},rac{\mathcal{T}(\mathcal{S}_i)}{\mathcal{T}( au_{max})}
ight)$$
 for  $i=1,2,\ldots,n.$ 

This is similar to the TTT-plot for survival data treated earlier.

Straight line expected for HPP, i.e., if there is no trend.

*Concave shape* indicates increasing trend (more large intervals in the beginning)

*Convex shape* indicates decreasing trend (more short intervals in the beginning)



22 / 31

# TTT-PLOT FOR SIMPLE EXAMPLE WITH 3 SYSTEMS



#### TREND TESTS FOR VALVESEAT DATA

#### Results for: TMA4275NelsonValveseat.MTW

#### Parametric Growth Curve: T

System: ID

Model: Power-Law Process Estimation Method: Maximum Likelihood

Parameter Estimates

|           |          | Standard | 95% No  | rmal CI |
|-----------|----------|----------|---------|---------|
| Parameter | Estimate | Error    | Lower   | Upper   |
| Shape     | 1,39958  | 0,201    | 1,05695 | 1,85327 |
| Scale     | 553,643  | 57,864   | 451,094 | 679,505 |

Test for Equal Shape Parameters Bartlett's Modified Likelihood Ratio Chi-Square

\* NOTE \* Test skipped - There must be at least one other failure which is not at the time the

system is retired: Check ID = 251.

Trend Tests

|                | MIL-Hdbk-189 |        | Laplace's |        |                  |
|----------------|--------------|--------|-----------|--------|------------------|
|                | TTT-based    | Pooled | TTT-based | Pooled | Anderson-Darling |
| Test Statistic | 68,72        | 66,15  | 2,03      | 2,38   | 3,17             |
| P-Value        | 0,032        | 0,017  | 0,043     | 0,017  | 0,022            |
| DF             | 96           | 96     |           |        |                  |

э

## TTT-PLOT FOR VALVESEAT DATA



# TREND TESTS FOR AIRCONDITIONER DATA

#### Results for: TMA4275ProschanAircondition.MTW

#### Parametric Growth Curve: T

System: ID

Model: Power-Law Process Estimation Method: Maximum Likelihood

Parameter Estimates

|           |          | Standard | 95% No  | rmal CI |
|-----------|----------|----------|---------|---------|
| Parameter | Estimate | Error    | Lower   | Upper   |
| Shape     | 1,15210  | 0,066    | 1,02906 | 1,28985 |
| Scale     | 132,960  | 20,216   | 98,6964 | 179,119 |

Test for Equal Shape Parameters Bartlett's Modified Likelihood Ratio Chi-Square

Test Statistic 6,70 P-Value 0,979 DF 16

Trend Tests

|                | MIL-Hdbk-189 |        | Laplace's |        |                        |  |
|----------------|--------------|--------|-----------|--------|------------------------|--|
|                | TTT-based    | Pooled | TTT-based | Pooled | Anderson-Darling       |  |
| Test Statistic | 363,67       | 350,40 | 1,88      | 0,79   | 2,25                   |  |
| P-Value        | 0,031        | 0,129  | 0,061     | 0,428  | 0,068                  |  |
| DF             | 424          | 392    |           |        | -                      |  |
|                |              |        |           |        | ar shrees shrees a 🖉 🕨 |  |

3

The null hypothesis of "the processes are all HPP with the same ROCOF  $\lambda$ " is rejected (by the TTT-based tests, at least the one based on Mil Hbk).

On the other hand, the null hypothesis of "the processes are all HPP, possibly with **different** ROCOFs" is not rejected by any of the tests.

This is in accordance with Proschan's conclusion in 1963, namely that the processes are HPPs with different ROCOFs.

# TTT-PLOT FOR AIRCONDITIONER DATA



TMA4275 LIFETIME ANALYSIS

28 / 31



#### Definition of renewal process:

 $T_1, T_2, \ldots$  are i.i.d. with common cdf F(t).

Usually difficult to find nice expressions for W(t) and w(t) (except for HPP). Thus approximations are needed (see next slide).

# LIMIT RESULTS FOR RENEWAL PROCESSES

Let

$$\mu = E(T_i) (= MTBF)$$
  
$$\sigma^2 = Var(T_i)$$

The HPP is an RP with  $T_i \sim expon(\lambda)$ . Hence

$$W(t) = \lambda t = \frac{1}{\mu}t$$
, so  
 $\frac{W(t)}{t} = \frac{1}{\mu}$ 

For general renewal processes we have The Elementary Renewal Theorem:

$$\lim_{t\to\infty}\frac{W(t)}{t}=\frac{1}{\mu}$$

#### LIMIT RESULTS FOR RENEWAL PROCESSES (CONT.)

The Elementary Renewal Theorem implies (R&H, p.253):

$$W(t)pproxrac{t}{\mu}$$
 for large  $t$  .

A better approximation is

$$W(t)pproxrac{t}{\mu}+rac{1}{2}(rac{\sigma^2}{\mu^2}-1)$$

Finally, for an HPP( $\lambda$ ) we clearly have exactly

$$W(t+lpha)-W(t)=rac{1}{\mu}(t+lpha)-rac{1}{\mu}t=rac{lpha}{\mu}$$

For general RP we have *Blackwell's theorem*:

$$\lim_{t\to\infty} \left( W(t+\alpha) - W(t) \right) = \frac{\alpha}{\mu}$$