TMA4275 LIFETIME ANALYSIS

Slides 3: Parametric families of lifetime distributions

Bo Lindqvist
Department of Mathematical Sciences
Norwegian University of Science and Technology
Trondheim

http://www.math.ntnu.no/~bo/bo@math.ntnu.no

NTNU, Spring 2015

MEAN TIME TO FAILURE (MTTF); EXPECTED LIFETIME

For a lifetime T we define

$$MTTF = E(T) = \int_0^\infty tf(t)dt = \int_0^\infty R(t)dt$$

(The last equality is proven by partial integration, noting that R'(t) = -f(t). Do it!)

$$Var(T) = \int_0^\infty (t - E(T))^2 f(t) dt$$
$$= \int_0^\infty t^2 f(t) dt - (E(T))^2$$
$$= E(T^2) - (E(T))^2$$

$$SD(T) = (Var(t))^{1/2}$$

EXAMPLE: EXPONENTIAL DISTRIBUTION

Let T be exponentially distributed with density $f(t) = \lambda e^{-\lambda t}$. Then you may check the following computations:

$$E(T) = \int_0^\infty t\lambda e^{-\lambda t} dt = \int_0^\infty e^{-\lambda t} dt = \frac{1}{\lambda}$$

$$Var(T) = E(T^2) - (E(T))^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

$$SD(T) = \frac{1}{\lambda}$$

Thus: For a component with exponentially distributed lifetime,

$$MTTF = 1/failure rate$$

NOTE: We will mainly use the parameterization $f(t) = \frac{1}{\theta} e^{-t/\theta}$, so that

$$R(t) = e^{-t/\theta}, E(T) = \theta, SD = \theta$$

WEIBULL DISTRIBUTION

The lifetime T is Weibull-distributed with shape parameter $\alpha>0$ and scale parameter $\theta>0$, written $T\sim \text{Weib}(\alpha,\beta)$, if

$$R(t) = e^{-(\frac{t}{\theta})^{\alpha}}$$

From this we can derive:

$$\begin{split} Z(t) &= \left(\frac{t}{\theta}\right)^{\alpha} \\ z(t) &= \left(\frac{\alpha}{\theta}\left(\frac{t}{\theta}\right)^{\alpha-1} \right) \\ f(t) &= z(t)e^{-Z(t)} = \frac{\alpha}{\theta}\left(\frac{t}{\theta}\right)^{\alpha-1}e^{-\left(\frac{t}{\theta}\right)^{\alpha}} \end{split}$$

 $\alpha=1$ corresponds to the exponential distribution;

 α < 1 gives a decreasing failure rate (DFR);

 $\alpha > 1$ gives an increasing failure rate (IFR).

WEIBULL DISTRIBUTION (CONT.)

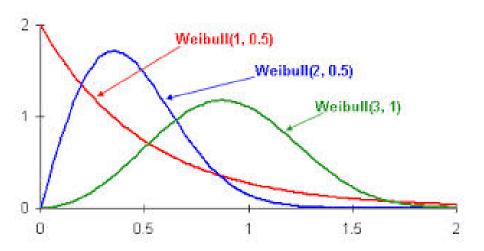
$$E(T) = \int_0^\infty R(t)dt = \int_0^\infty e^{-\left(\frac{t}{\theta}\right)^\alpha}dt = \cdots = \theta \cdot \Gamma\left(\frac{1}{\alpha} + 1\right)$$

where $\Gamma(\cdot)$ is the gamma-function defined by $\Gamma(a) = \int_0^\infty u^{a-1} e^{-u} du$.

$$Var(T) = \theta^{2} \left(\Gamma \left(\frac{2}{\alpha} + 1 \right) - \Gamma^{2} \left(\frac{1}{\alpha} + 1 \right) \right)$$

$$SD(T) = \theta \left(\Gamma \left(\frac{2}{\alpha} + 1 \right) - \Gamma^{2} \left(\frac{1}{\alpha} + 1 \right) \right)^{1/2}$$

WEIBULL DISTRIBUTION (CONT.)



NORMAL DISTRIBUTION

Standard normal distribution, $Z \sim N(0, 1)$:

$$f_Z(z) = \phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$
 $F_Z(z) = \Phi(z) = \int_{-\infty}^z \phi(w) dw$

Now Let $Y \sim N(\mu, \sigma)$. Then it is well known that

$$F_Y(y) = P(Y \le y) = \Phi\left(\frac{y-\mu}{\sigma}\right)$$
 $M_Y(t) = E(e^{tY}) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$ (moment generating function)

Further, if we let $Z = \frac{Y - \mu}{\sigma} \sim N(0, 1)$, then $Y = \mu + \sigma Z$.

Thus: The model $Y \sim N(\mu, \sigma)$ is a **location–scale family**, defined by the standardized random variable Z, with *location parameter* μ and *scale parameter* σ .

EXERCISE

- Consider $Y = \mu + \sigma Z$ where $Z \sim N(0,1)$. What is the distribution of Y? Why are the names *location* parameter and *scale* parameter appropriate for, respectively, μ and σ ?
- The normal distribution is sometimes used as a lifetime distribution (in fact it is a possible choice in MINITAB). What is a possible problem with this distribution?

LOGNORMAL DISTRIBUTION

The lifetime T has a lognormal distribution with parameters μ and σ if $Y \equiv \ln T$ is normally distributed, $Y \sim N(\mu, \sigma)$.

We can hence write

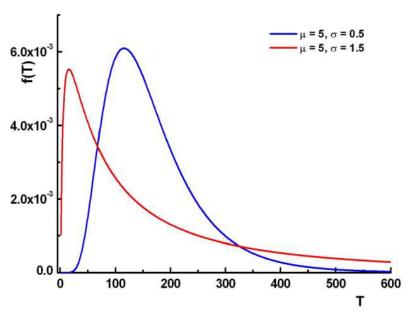
$$Y = \text{In } \mathsf{T} = \mu + \sigma \mathsf{Z} \qquad (*)$$

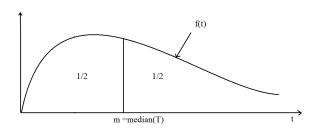
where $Z \sim N(0,1)$.

Here μ is called the *location parameter* and σ is called the *scale parameter* of the lognormal distribution.

Because of (*) we say that the lognormal distribution is a **log-location-scale family** of distributions, meaning that the log of T defines a *location-scale* family.

LOGNORMAL DISTRIBUTION (CONT.)





m = median(T) is defined by F(m) = R(m) = 1/2.

Compute the median m when T is

- **①** Exponentially distributed with parameter θ , i.e. $T \sim \mathsf{Expon}(\theta)$
- $T \sim Weib(\alpha, \theta)$
- **3** $T \sim \text{lognormal}(\mu, \sigma)$

FUNCTIONS FOR THE LOGNORMAL DISTRIBUTION

Recall:

$$T \sim \mathsf{lognormal}(\mu, \sigma) \Longleftrightarrow \mathsf{ln}\, T \sim \mathsf{N}(\mu, \sigma)$$

Thus

$$R(t) = P(T > t) = P(\ln T > \ln t)$$

= $1 - \Phi\left(\frac{\ln t - \mu}{\sigma}\right)$

and

$$f(t) = -R'(t) = \phi \left(\frac{\ln t - \mu}{\sigma}\right) \cdot \frac{1}{t\sigma}$$
$$= \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sigma} \cdot \frac{1}{t} e^{-\frac{(\ln t - \mu)^2}{2\sigma^2}} \text{ for } t > 0$$

HAZARD FUNCTION OF THE LOGNORMAL DISTRIBUTION

$$z(t) = \frac{f(t)}{R(t)} = \frac{\phi(\frac{\ln t - \mu}{\sigma})/(t\sigma)}{1 - \Phi(\frac{\ln t - \mu}{\sigma})}$$

MORE RESULTS FOR THE LOGNORMAL DISTRIBUTION

Let $T \sim \text{lognormal}(\mu, \sigma)$. Then $Y = \text{ln } T \sim \mathcal{N}(\mu, \sigma)$, and hence

$$M_Y(t) = E(e^{tY}) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

Thus:

$$E(T) = E(e^{Y}) = M_{Y}(1) = e^{\mu + \frac{1}{2}\sigma^{2}}$$

 $E(T^{2}) = E(e^{2Y}) = M_{Y}(2) = e^{2\mu + 2\sigma^{2}}$
 $Var(T) = e^{2\mu + 2\sigma^{2}} - e^{2\mu + \sigma^{2}} = e^{2\mu + \sigma^{2}}(e^{\sigma^{2}} - 1)$

On the other hand,

$$median(T) = e^{\mu}$$

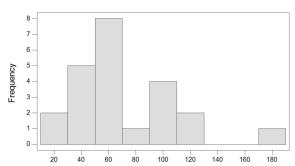
since
$$P(T \le e^{\mu}) = P(\ln T \le \mu) = P(Y \le \mu) = 1/2$$
.

RECALL BALL BEARING FAILURE DATA

17,88	28,92	33,00	41,52	42,12	45,60	48,40	51,84
51,96	54,12	55,56	67,80	68,64	68,64	68,88	84,12
93,12	98,64	105,12	105,84	127,92	128,04	173,40	

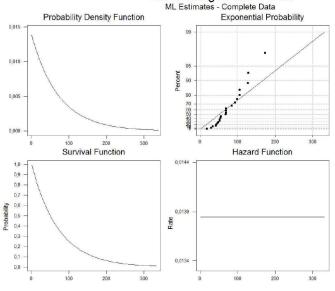
Question: How can we fit a parametric lifetime model to these data?

Histogram of Revolutions



BB-DATA: EXPONENTIAL DISTRIBUTION (MINITAB)

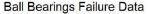
Ball Bearings Failure Data

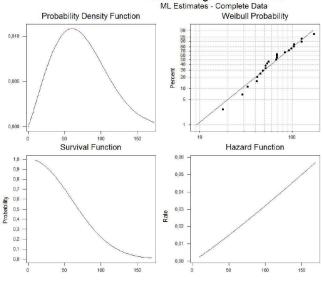


Shape 1
Scale 72,22
MTTF 72,22
Failure 23
Gensor 0

Goodness of Fit AD* 3,341

BB-DATA: WEIBULL DISTRIBUTION (MINITAB)

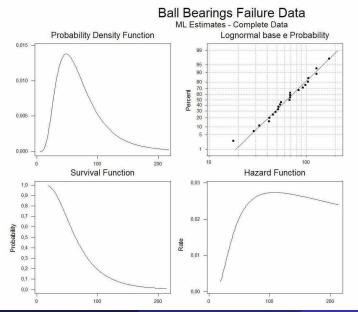




Shape 2,1018 Scale 81,875 MTTF 72.515 Failure 23 Censor 0

Goodness of Fit AD* 0,802

BB-DATA: LOGNORMAL DISTRIBUTION (MINITAB)

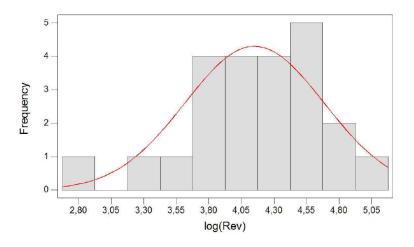


Location 4,1504 Scale 0,5217 MTTF 72,709 Failure 23 Censor 0

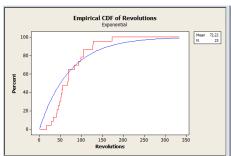
Goodness of Fit AD* 0.647

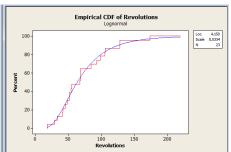
BB-DATA: HISTOGRAM OF LOG-LIFETIMES

Histogram of log(Rev), with Normal Curve



BB-DATA: EMPIRICAL DISTRIBUTION COMPARED TO PARAMETRIC FITS





BB-DATA: SUMMARY OF ESTIMATION RESULTS

Model	MTTF	$\widehat{STD(T)}$	$\widehat{med(T)}$	$\hat{\alpha}$	$\hat{ heta}$	$\hat{\mu}$	$\hat{\sigma}$
Exp	72.221	72.221	50.060		72.221		
Weib	72.515	36.250	68.773	2.102	81.875		
Logn	72.710	40.664	63.458			4.150	0.522
Norm	72.221	36.667	72.221			72.221	36.667

Method: Maximum likelihood.

MOTIVATION FOR EXPONENTIAL DISTRIBUTION

- Simplest distribution used in the analysis of reliability data.
- Has the important characteristic that its hazard function is constant (does not depend on time t).
- Popular distribution for some kinds of electronic components (e.g., capacitors or robust, high-quality integrated circuits).
- Might be useful to describe failure times for components that exhibit physical wearout only after expected technological life of the system, in which the component would be replaced.

MOTIVATION FOR WEIBULL DISTRIBUTION

- The theory of extreme values shows that the Weibull distribution can be used to model the minimum of a large number of independent positive random variables from a certain class of distributions.
 - Failure of the weakest link in a chain with many links with failure mechanisms (e.g. fatigue) in each link acting approximately independently.
 - Failure of a system with a large number of components in series and with approximately independent failure mechanisms in each component.
- The more common justification for its use is empirical: the Weibull distribution can be used to model failure-time data with a decreasing or an increasing hazard function.

MOTIVATION FOR LOGNORMAL DISTRIBUTION

- The lognormal distribution is a common model for failure times.
- It can be justified for a random variable that arises from the product of a number of identically distributed independent positive random quantities (remember central limit theorem for sum of normals).
- It has been suggested as an appropriate model for failure time caused by a degradation process with combinations of random rates that combine multiplicatively.
- Widely used to describe time to fracture from fatigue crack growth in metals.

CONTENTS OF SLIDES 3

- Definition of
 - MTTF= *E(T)*
 - Var(T)
 - $SD(T) = \sqrt{Var T}$
- Presentation of distributions:
 - Weibull-distribution, Weib(α, θ)
 - Normal distribution, $N(\mu, \sigma)$
 - Lognormal distribution, lognormal (μ, σ)
- Definition of
 - location-scale family, e.g. $N(\mu, \sigma)$
 - log-location-scale family, e.g. lognormal (μ, σ)