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WHY IS AN ESTIMATE OF Z (t) USEFUL?

Note first that Z ′(t) = z(t). Thus,

T is IFR ⇔ z(t) is increasing ⇔ Z (t) is convex

T is DFR ⇔ z(t) is decreasing ⇔ Z (t) is concave

Thus a plot of an estimate Ẑ (t) can give us information on whether the
distribution of T is IFR (increasing failure rate) or DFR (decreasing failure
rate).
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ESTIMATING Z (t) BY THE KM-ESTIMATOR

Recall that R(t) = e−Z(t), so

Z (t) = − lnR(t)

Thus, if R̂KM(t) is the KM-estimator for R(t), then we can define,

ẐKM(t) = − ln R̂KM(t)

= − ln
∏

T(i)≤t

ni − di
ni

= −
∑
T(i)≤t

ln
(
1− di

ni

)
≈
∑
T(i)≤t

di
ni

where we used that for small x is

− ln(1− x) ≈ x
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THE NELSON-AALEN ESTIMATOR FOR Z (t)

The Nelson-Aalen estimator (NA-estimator) is simply defined by

ẐNA(t) =
∑
T(i)≤t

di
ni

It can then be shown that its variance can be estimated by

̂Var(ẐNA(t)) =
∑
T(i)≤t

di
n2i

Note: The Nelson-Aalen estimator is not included in MINITAB (only
“hazard plot” which is in fact not correct). For this course has been made
a MINITAB Macro (see MINITAB Macros on the Software webpage).

In the following we shall have a closer look at how the Nelson-Aalen
estimator can be motivated from properties of the exponential distribution.
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EXAMPLE: NELSON-AALEN ESTIMATOR
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GENERAL THEORY: RESIDUAL LIFETIME

Suppose an item with lifetime T is still alive at time s. The probability of
surviving an additional t time is then

R(t | s) ≡ P(T > s + t | T > s)

=
P(T > s + t ∩ T > s)

P(T > s)

=
R(s + t)

R(s)

This is called the conditional survival function of the item, or the
distribution of the residual life for an item at age s. The following is its
expectation, called Mean Residual Life:

MRL(s) =

∫ ∞
0

R(t | s)dt =

∫ ∞
0

R(s + t)

R(s)
dt

=
1

R(s)

∫ ∞
s

R(t)dt
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PROPERTIES OF THE EXPONENTIAL DISTRIBUTION:

1. The memoryless property

Write T ∼ expon(λ) if f (t) = λe−λt ; R(t) = P(T > t) = e−λt , t > 0.

For T ∼ expon(λ) we therefore have

R(t | s) = P(T > s + t | T > s) =
R(s + t)

R(s)
=

e−λ(s+t)

e−λs
= e−λt = R(t).

Thus: For any age s, the remaining life has the same distribution as the
lifetime distribution of a new item.

This is called the memoryless property of the exponential distribution.
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PROPERTIES OF THE EXPONENTIAL DISTRIBUTION

2. Let T ∼ expon(λ) and let W = aT . Then W ∼ expon(λ/a).

Proof:

P(W > w) = P(aT > w) = P(T >
w

a
) = e−(

λ
a
)w

3. Let Ti for i = 1, . . . , n be independent, with Ti ∼ expon(λi ).
Let W = min(T1, . . . ,Tn).. Then W ∼ expon(

∑n
i=1 λi ).

Proof:

P(W > w) = P(min(T1, · · · ,Tn) > w)

= P(T1 > w ,T2 > w , · · · ,Tn > w)

= P(T1 > w)P(T2 > w) · · ·P(Tn > w)

= e−(λ1+···+λn)w ,

so W ∼ expon(λ1 + · · ·+ λn)
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PROPERTIES OF THE EXPONENTIAL DISTRIBUTION

4. In particular if T1, . . . ,Tn are independent each with
distribution expon(λ), then

W = min(T1, . . . ,Tn) ∼ expon(nλ)

So a series system of n components with lifetimes that are independent
and exponentially distributed with hazard rate λ, has a lifetime which is
exponenital with hazard rate nλ and hence

MTTF =
1

nλ
=

Component MTTF

n
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PROPERTIES OF THE EXPONENTIAL DISTRIBUTION

5. Let T1, . . . ,Tn be independent each with distribution
expon(λ). Let the ordering of these be

T(1) < T(2) < · · · < T(n)

Then

nT(1)

(n − 1)(T(2) − T(1))

(n − 2)(T(3) − T(2))

...

(n − i + 1)(T(i) − T(i−1))

...

(T(n) − T(n−1))

are independent and identically distributed as expon(λ).
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PROPERTIES OF THE EXPONENTIAL DISTRIBUTION

5b. Let T1, . . . ,Tn be independent each with distribution
expon(λ). Let the ordering of these be

T(1) < T(2) < · · · < T(n)

Then

T(1) ∼ expon(nλ)

T(2) − T(1) ∼ expon((n − 1)λ)

T(3) − T(2) ∼ expon((n − 2)λ)

...

T(i) − T(i−1) ∼ expon((n − i + 1)λ)

...

T(n) − T(n−1) ∼ expon(λ)

are independent with the displayed exponential distributions.
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PROOF OF PROPERTIES 5 AND 5b

Proof of 5b: Let n units with lifetime expon(λ) be put on test at time 0.
Hence T(1) = min(T1, . . . ,Tn), so by property 4, T(1) ∼ expon(nλ).

After time T(1) there are n − 1 unfailed units. At time s = T(1) each of
these has by property 1 a remaining lifetime which is expon(λ). Thus
T(2) − T(1) is distributed as the minimum of n − 1 expon(λ) variables and
hence is expon((n − 1)λ). That T(2) − T(1) is independent of T(1) follows
from property 1 which says that, for the exponential distribution, the
distribution of the remaining lifetime is the same whatever be the age of
the item.
This reasoning can be continued at time T(2) in an obvious fashion, and
we finish by concluding that T(n) − T(n−1) is expon(λ).

Proof of 5: To go from 5b to 5, we use the earlier property 2.
Bo Lindqvist Slides 6 ()TMA4275 LIFETIME ANALYSIS 13 / 50



A USEFUL RESULT

Consider lifetime T with given cumulative hazard function Z (t). After we
observe T , we may compute Z (T ), which is hence a random variable since
T is a random variable. The following result says that this random
variable is exponentially distributed with parameter 1, whatever be the
distribution of T . The important point is of course that it is T ’s own Z (t)
that is used to transform T .

Proof: Recall that Z (t) = − lnR(t) and R(t) = P(T > t). Thus we have:

P(Z (T ) > z) = P(− lnR(T ) > z) = P(lnR(T ) < −z)

= P(R(T ) < e−z) = P(T > R−1(e−z))

= R(R−1(e−z)) = e−z

so Z (T ) ∼ expon(1). Here we used that R(t) is decreasing and hence has
a decreasing inverse function R−1.
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EXAMPLES

Suppose T ∼ expon(λ). Then z(t) = λ and Z (t) = λt. Thus the
result says that Z (T ) = λT ∼ expon(1). But this also follows from
the previous Property 2 for the exponential distribution.

Suppose then T ∼Weibull(α, θ), so that Z (t) =
(
t
θ

)α
.

Then

Z (T ) =

(
T

θ

)α
so

P(Z (T ) > z) = P(

(
T

θ

)α
> z) = P

(
T

θ
> z1/α

)
= P(T > θz1/α) = R(θz1/α)

= e−
(
θz1/α

θ

)α
= e−z

i.e. Z (T ) ∼ expon(1).
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INTERPRETATION OF Z (T ) ∼ expon(1)

Write the result as

Z (T ) =

∫ T

0
z(u)du = V

where V ∼ expon(1).

If we think of V as “given” to us at birth, drawn from an
expon(1)-distribution, then our lifetime T is determined by the behavior of
the hazard function z(t). Thus the lifetime will be longer if we are able to
reduce our hazard throughout life.

The result can also be used to simulate lifetimes T1, . . . ,Tn for a sample
of units: Draw independent expon(1)-variables V1, . . . ,Vn and compute
the corresponding Ti as

Ti = Z−1(Vi ), i = 1, . . . , n
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NELSON-AALEN PLOT: NONCENSORED DATA

Suppose data are n independent observations T1, . . . ,Tn of the lifetime T
with cumulative hazard function Z (t), with no censored observations.

Then Z (T1), . . . ,Z (Tn) are i.i.d. expon(1), and from figure:

E
(
Z (T(i))

)
=

1

n
+

1

n − 1
+ · · · 1

n − i + 1
for i = 1, 2, . . . , n

Nelson: For noncensored data, estimate the function Z (t) by letting

Ẑ (T(i)) =
1

n
+

1

n − 1
+ · · ·+ 1

n − i + 1
for i = 1, 2, . . . , n

(and let Ẑ (t) be constant between observations).
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NELSON-AALEN PLOT: CENSORED DATA

Let T(1) < T(2) < · · · be the observed failure times.

Assume that the censored observations are always deleted from the data in
the immediate beginning of each interval (T(i−1),T(i)), and let ni be the
number at risk after deletion of the censored ones.

Nelson-Aalen: Estimate the function Z (t) by letting

Ẑ (T(i)) =
1

n1
+

1

n2
+ · · ·+ 1

ni
for i = 1, 2, . . .

(and let Ẑ (t) be constant between observations).
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TOTAL TIME ON TEST, T (t)

n components are put on test at time t = 0 and observed until failure.

Let T (t) = Total Time on Test at time t.

Y1 = T (T(1)) = nT(1)

Y2 = T (T(2)) = T (T(1)) + (n − 1)(T(2) − T(1)) = T(1) + (n − 1)T(2)

...

Yi = T (T(i)) = T (T(i−1)) + (n − i + 1)(T(i) − T(i−1))

= T(1) + T(2) + · · ·+ T(i−1) + (n − i + 1)T(i)

...

Yn = T (T(n)) = T (T(n−1)) + (T(n) − T(n−1)) = T(1) + T(2) + · · ·+ T(n)
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TTT-PLOT, UNCENSORED DATA

Recall:

n components are put on test at time t = 0 and observed until failure.

T (t) = Total Time on Test at time t.

A non-normalized TTT-plot would be a plot of the points

(i , T (T(i))), i = 1, · · · , n.

The convention is, however, to plot the points( i
n
,
T (T(i))

T (T(n))

)
or

( i
n
,
Yi

Yn

)
, for i = 1, 2, . . . , n

The last point is thus (1,1), so this plot is always in the unit square.
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TTT-PLOT, UNCENSORED DATA

Recall definition of TTT-plot: Plot the points( i
n
,
Yi

Yn

)
for i = 1, 2, . . . , n,

where Yi = T (T(i)) is total time on test until T(i).
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EXAMPLE: TTT-plot

n = 10; uncensored observations T(1), . . . ,T(10).
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EXAMPLE: TTT-plot
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WHAT ARE TTT-PLOTS USED FOR?

Recall that if T1, . . . ,Tn are expon(λ), then

(n − i + 1)(T(i) − T(i−1)) ∼ expon(λ),

so
E (Yi ) = E (T (T(i))) = i(1/λ) = i/λ for i = 1, . . . , n

so

E

(
Yi

Yn

)
≈ i/λ

n/λ
=

i

n

so the TTT-plot is approximately a plot of (i/n, i/n) which are on the
diagonal of the square defined by the TTT-plot.
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DIAGNOSTICS FROM TTT-PLOTS

SHAPES OF TTT-PLOTS

IFR: Concave shape. The first lifetimes are generally longer than
expected from an exponential distribution, while the last
ones are shorter.

DFR: Convex shape. The first lifetimes are generally shorter than
expected from an exponential distribution, while the last
ones are longer.

Bathtub: S-shaped, i.e. convex (DFR) in the beginning and concave
(IFR) at the end.
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TTT: BALL-BEARING DATA
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THE HOMOGENEOUS POISSON PROCESS (HPP)

Definition: Let N(s, t) = number of events in(s, t]

1 P(N(t, t + h) = 1) = λh + o(h) ≈ λh
2 P(N(t, t + h) ≥ 2) = o(h) ≈ 0

3 For disjoint intervals (s1, t1], (s2, t2], . . ., the counts
N(s1, t1],N(s2, t2], . . . are independent random variables.

It can be shown that:

N(s, t) is Poisson (λ(t − s)) so E [N(s, t)] = λ(t − s)

λ is called the intensity of the process.
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HPP: TIME TO kth EVENT

Times between events are independent and distributed as expon(λ).

The time to the kth event (k = 1, 2, . . .) is gamma-distributed with
pdf and reliability function given by, respectively,

f (t) =
λ(λt)k−1e−λt

(k − 1)!
for t > 0

R(t) = P(Sk > t) =(∗) P(N(t) ≤ k − 1) =
k−1∑
x=0

(λt)x

x!
e−λt

(*) See time point t in figure.
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MORE ON THE HOMOGENEOUS POISSON PROCESS

RESULT 1:

Let the HPP start at time t = 0 and continue until a given number n
events have occurrred. Then, given the value Sn = sn, the event times
S1, . . . ,Sn−1 are distributed as the ordering of n − 1 i.i.d. variables from
the distribution U[0, sn], i.e. the uniform distribution on the interval from
0 to sn.
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MORE ON THE HOMOGENEOUS POISSON PROCESS

RESULT 2:

Let the HPP start at time t = 0 and continue until a given time τ . Let N
denote the number of events that have occurrred until time τ (this is a
random number). Then, given the value N = n, the event times S1, . . . ,Sn
are distributed as the ordering of n i.i.d. variables from the distribution
U[0, τ ], i.e. the uniform distribution on the interval from 0 to τ .
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TTT-PLOT FOR EXPONENTIAL OBSERVATIONS

Suppose T1, . . . ,Tn are distributed as expon(λ). Then Y1,Y2, . . . behaves
like an HPP with intensity λ (called HPP(λ)), by result 5. By Result 1:

Given the value Yn = yn, the (Y1, . . . ,Yn−1) are distributed as the
ordering of n − 1 i.i.d. U[0, yn].
Hence, given the value Yn = yn, the (Y1/yn, . . . ,Yn−1/yn) are
distributed as the ordering of n − 1 i.i.d. U[0, 1].
Since the latter distribution does not depend on yn, the
(Y1/Yn, . . . ,Yn−1/Yn) are distributed as the ordering of n − 1 i.i.d.
U[0, 1].
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TTT-PLOT FOR EXPONENTIAL OBSERVATIONS

Recall: The
(
Y1
Yn
, . . . , Yn−1

Yn

)
are distributed as the ordering of n − 1 i.i.d.

U[0, 1].

From this can be shown that we have, under exponentiality, exactly:

E

(
Yi

Yn

)
=

i

n
, for i = 1, . . . , n − 1

(we concluded only ≈ earlier).
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BARLOW-PROSCHAN’S TEST FOR EXPONENTIALITY

One is often not satisfied with just looking at plots to determine
distributions. Assume we want to formally test

H0 : T ∼ expon(λ) for some unspecified λ

versus H1 : (either of)


T has IFR

T has DFR

T has monotone failure rate

Suppose T1, · · · ,Tn is complete data set, i.e. no censorings.

The test statistic of Barlow-Proschan’s test is

W =
Y1

Yn
+

Y2

Yn
+ ·+ Yn−1

Yn
=
T (T(1))

T (T(n))
+ · · ·+

T (T(n−1))

T (T(n))
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BARLOW-PROSCHAN’S TEST FOR EXPONENTIALITY

W =
Y1

Yn
+

Y2

Yn
+ ·+ Yn−1

Yn

When compared to the exponential distribution:

W becomes “too large” if distribution is IFR

W becomes “too small” if distribution is DFR
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BARLOW-PROSCHAN’S TEST FOR EXPONENTIALITY

Thus: The null hypothesis H0 of exponential distributon should be
rejected if W is either much larger or much smaller than what should be
expected from exponentially distributed lifetimes.

We therefore need the distribution of W when T1, . . . ,Tn ∼ expon(λ).
We know already:

Y1

Yn
, · · · , Yn−1

Yn

are distributed as the ordering of n − 1 independent U[0, 1]-variables, so:

W = sum of n − 1 independent U[0, 1]-variables

E (W ) = (n − 1)/2

Var(W ) = (n − 1)/12

Thus by the Central Limit Theorem, W is approximately normal:

W ≈ N(
n − 1

2
,
n − 1

12
) when lifetimes are exponential
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BARLOW-PROSCHAN’S TEST FOR EXPONENTIALITY

Recall:

W =
Y1

Yn
+

Y2

Yn
+ · · ·+ Yn−1

Yn
≈ N(

n − 1

2
,
n − 1

12
)

Thus we compute

Z =
W − n−1

2√
n−1
12

which is ≈ N(0, 1) under H0.

Tests with level α: Let T1, · · · ,Tn be a complete sample of T .

H0 : T ∼ expon(λ)

versus H1 :


T is IFR : Reject if Z ≥ zα

T is DFR: Reject if Z ≤ −zα
T has monotone hazard: Reject if Z ≤ −zα/2 or Z ≥ zα/2
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CRITICAL VALUES OF NORMAL DISTRIBUTION
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EXAMPLE: BARLOW-PROSCHAN’S TEST

Here W is the sum of the last column, except the last “1”. We have
W = 4.847 and

Z =
4.847− 9

2√
9
12

= 0.401

so we do not reject at α = 0.05, for example.
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EXAMPLE OF BP TEST: BALL-BEARING DATA

Use of Macro from course web page: W = 15.648, n = 23, so

Z =
15.648− 11√

22
12

= 3.4328

and we reject (at any reasonable significance level) a test of

H0 : exponential distribution versus H1 : IFR distribution.
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TTT-PLOT FOR CENSORED DATA

Let T(1) < T(2) < · · · < T(k) be the observed failure times.

Assume that the censored observations are always deleted from the data in
the immediate beginning of each interval (T(i−1),T(i)), and let ni be the
number at risk after deletion of the censored ones.

Then Y1,Y2, . . . is still a HPP when lifetimes are exponential.
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TTT-PLOT FOR CENSORED DATA (CONT.)

On the previous slide, the censored observations contribute to the Total
Time on Test only in the intervals strictly before the ones where they are
censored.

An improvement of the method is to let the censored observations
contribute also in the interval where they are censored, but only up to the
time they are censored.

This means in practice that we compute the TTT as for the noncensored
case, but we let only the failure times be recorded as the event times
Y1, . . . ,Yk , and we plot(

i

k
,
Yi

Yk

)
, for i = 1, . . . , k
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EXAMPLE: TTT-PLOT FOR CENSORED DATA
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EXAMPLE: TTT-PLOT FOR CENSORED DATA
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NONPARAMETRIC COMPARISON OF SURVIVAL FUNCTIONS

Assume first two groups:

Group 1: Control group, lifetime T1, with R1(t) = P(T1 > t)

Group 2: Treatment group, lifetime T2, with R2(t) = P(T2 > t)

Want to test:
H0 : R1(t) = R2(t) for all t

(i.e. no difference between groups)

vs H1 : R1(t) 6= R2(t) for at least one t

Graphical solution: Look at KM-Plots
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EXAMPLE: LEUKEMIA DATA
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EXAMPLE: LEUKEMIA DATA

Group 1=Placebo (control), Group 2=6MP
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EXAMPLE: LEUKEMIA DATA

Group 1=Placebo (control), Group 2=6MP (with 95% confidence
intervals)
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FORMAL TESTING OF H0 : R1(t) ≡ R2(t)

Formal testing can be done by

The Logrank Test

Mantel-Haenszel Test

A simple version is to compute a χ2-statistic of the form

V =
(O1 − E1)2

E1
+

(O2 − E2)2

E2

where

O1,O2 are observed # failures of the two groups

E1,E2 are expected # failures if the survival functions are equal.

Note that O1 + O2 = total number of failures = E1 + E2.

Under H0 is V ≈ χ2
1 (i.e. χ2-distributed with 1 degree of freedom)
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COMPUTATION

Go through all failure times T(1), · · · ,T(k) considering groups together:

Group 1 Group 2 Total at T(j)

# at risk: N1j N2j Nj

Obs # fail at T(j) O1j O2j Oj

Est prob of fail under H0
Oj

Nj

Oj

Nj

Estim exp # failures E1j =
Oj

Nj
· N1j E2j =

Oj

Nj
· N2j

Then sum over all failure times T(1), · · · ,T(k):

O1 =
k∑

j=1

O1j , E1 =
k∑

j=1

E1j

O2 =
k∑

j=1

O2j , E2 =
k∑

j=1

E2j

If more than two groups are compared, the table and the test statistic are
extended in a natural way, while the degrees of freedom of the
χ2-distribution equals # groups minus 1.
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LOGRANK TEST FOR LEUKEMIA DATA
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