TMA 4275 Lifetime Analysis 2017
 Homework 4

Problem 1

Consider the data (stars denote censored observations)
$31.7,39.2^{*}, 57.5,65.5,65.8^{*}, 70.0,75.0^{*}, 75.2^{*}, 87.5^{*}, 88.3^{*}, 94.2,101.7^{*}, 105.8^{*}, 109.2,110.0$, 130.0*
a) Calculate "manually" the Kaplan-Meier estimator $\hat{R}(t)$. Graph it both on paper and using MINITAB/R.
b) Calculate the estimate for MTTF based on the plot. (Check that you get the same result as MINITAB/R).
c) Estimate (if possible) the quartiles, $t_{0.25}, t_{0.50}, t_{0.75}$. Check with MINITAB/Rs results for median and IQR.
d) Calculate the estimate for $S \widehat{D(\hat{R}(t))}$ and check with MINITAB/Rs result.

Problem 2

Let the data be the same as in Problem 1.
a) Calculate "manually" the Nelson-Aalen estimator $\hat{Z}(t)$ and draw the plot on paper. What can you conclude about the hazard rate of the underlying distribution?
b) Use the MINITAB macro for Nelson-plot (found under the heading "MINITAB/R Macros for TMA4275" under Statistical Software on the course web page) or code in the file demo. R (for R) to check your computation and drawing.
c) Use also the Kaplan-Meier estimate in Problem 2 to estimate $Z(t)$ and compare with the result obtained in (a) of this problem.

Problem 3

An experiment has been carried out to gain information on the strength of a certain type of braided cord: 20 pieces of cord were investigated, 9 cords were damaged during the experiment, implying right-censored values (starred observations)
$26.8^{*}, 29.6^{*}, 33.4^{*}, 35.0^{*}, 35.0^{*}, 36.3^{*}, 64.2,70.8^{*}, 70.8^{*}, 85.0,99.6,117.5,122.0,137.1,146.9$, $180.5,180.5,180.5,195.0,200.0^{*}$
a) Calculate "manually" the Kaplan-Meier estimator $\hat{R}(t)$. Graph it both on paper and using MINITAB/R.
b) Calculate "manually" the Nelson-Aalen estimator $\hat{Z}(t)$ and draw the plot on paper.
c) Discuss the effect of censoring in these data.
d) Describe the form of the failure rate function.

