Plan for this digital lecture

- * Summary of Kaplan-Meier estimator
 - derivation of Kaplan-Meier estimator, $\widehat{A}(t)$
 - + product-integral
 - estimator for variance of $\widehat{S}(t)$
 - what if tied observations
 - large sample properties of $\widehat{S}(t)$
 - estimation of median and mean survival times
- * Discuss examples in ABG
 - example 3.8 (Figures 3.11 and 3.13)
 - example 3.9 (Figure 3.12)
- * Confidence interval for S(t)
 - includes solving Problem 3.6 in ABG
- $\star\,$ In a simple linear regression model: How to find a confidence interval for x for a given value of $\mu\,$
 - related to confidence interval for the *p*th fractile from $\widehat{S}(t)$

Situation

- ★ We assume:
 - n individuals
 - each individual has the same hazard rate $\alpha(t)$ and survival function S(t)
 - $-\,$ may have truncation and/or censoring
 - Y(t): number of individuals at risk just before time t

Situation

- ★ We assume:
 - n individuals
 - each individual has the same hazard rate $\alpha(t)$ and survival function S(t)
 - may have truncation and/or censoring
 - Y(t): number of individuals at risk just before time t

 \star Gives a multiplicative intensity process

$$\lambda(t) = \alpha(t)Y(t)$$

 \star Generalised definition of A(t)

$$A(t) = \int_0^t \frac{dS(u-)}{S(u-)}$$

* Generalised definition of A(t)

$$A(t) = \int_0^t \frac{dS(u-)}{S(u-)}$$

- * Find generalised expression for S(t)
 - discretise the time interval [0, t]
 - $-\,$ let the the length of the longest interval go to zero

$$S(t) = \prod_{u < t} (1 - dA(u)) = \lim_{\max(t_k - t_{k-1}) \to 0} \prod_{k=1}^{K} [1 - (A(t_k) - A(t_{k-1}))]$$

 \star Generalised definition of A(t)

$$A(t) = \int_0^t \frac{dS(u-)}{S(u-)}$$

- * Find generalised expression for S(t)
 - discretise the time interval [0, t]
 - let the the length of the longest interval go to zero

$$S(t) = \prod_{u < t} (1 - dA(u)) = \lim_{\max(t_k - t_{k-1}) \to 0} \prod_{k=1}^{K} [1 - (A(t_k) - A(t_{k-1}))]$$

- If
$$A(t)$$
 is a step function, $S(t) = \sum_{u < t} \alpha_u$
 $S(t) = \prod_{u < t} (1 - \alpha_u)$

- If A(t) is absolutely continuous

$$S(t) = \exp\{-A(t)\}$$

 \star Generalised definition of A(t)

$$A(t) = \int_0^t \frac{dS(u-)}{S(u-)}$$

- * Find generalised expression for S(t)
 - discretise the time interval [0, t]
 - let the the length of the longest interval go to zero

$$S(t) = \prod_{u < t} (1 - dA(u)) = \lim_{\max(t_k - t_{k-1}) \to 0} \prod_{k=1}^{K} [1 - (A(t_k) - A(t_{k-1}))]$$

- If
$$A(t)$$
 is a step function, $S(t) = \sum_{u < t} \alpha_u$
 $S(t) = \prod_{u < t} (1 - \alpha_u)$

- If A(t) is absolutely continuous

$$S(t) = \exp\{-A(t)\}$$

★ Kaplan-Meier estimator

$$\widehat{S}(t) = \prod_{u < t} (1 - d\widehat{A}(u)) = \prod_{j: T_j \leq t} \left(1 - rac{1}{Y(T_j)} \right)$$

Estimator for $Var[\widehat{S}(t)]$

- $\star\,$ Using martingale theori, we found that
 - $\widehat{S}(t)$ is approximately normal

-
$$\operatorname{Var}[\widehat{S}(t)] = S^2(t)\operatorname{Var}[\widehat{A}(t)]$$

Estimator for $Var[\widehat{S}(t)]$

- $\star\,$ Using martingale theori, we found that
 - $\widehat{S}(t)$ is approximately normal - $\operatorname{Var}[\widehat{S}(t)] = S^2(t)\operatorname{Var}[\widehat{A}(t)]$
- * Estimator for $Var[\widehat{S}(t)]$

$$\widehat{ au}^2(t) = \widehat{S}^2(t) \widehat{\sigma}^2(t) = \widehat{S}^2(t) \sum_{j: \mathcal{T}_j \leq t} rac{1}{Y(\mathcal{T}_j)^2}$$

Estimator for $Var[\widehat{S}(t)]$

- \star Using martingale theori, we found that
 - $\widehat{S}(t)$ is approximately normal - $\operatorname{Var}[\widehat{S}(t)] = S^2(t)\operatorname{Var}[\widehat{A}(t)]$
- * Estimator for $Var[\widehat{S}(t)]$

$$\widehat{ au}^2(t) = \widehat{S}^2(t) \widehat{\sigma}^2(t) = \widehat{S}^2(t) \sum_{j: T_j \leq t} rac{1}{Y(T_j)^2}$$

* Alternative estimator (Greenwood's formula)

$$\widehat{ au}^2(t) = \widehat{S}^2(t) \sum_{j: \mathcal{T}_j \leq t} rac{1}{Y(\mathcal{T}_j)(Y(\mathcal{T}_j)-1)}$$

Kaplan-Meier with tied observations

★ Recall

$$\widehat{S}(t) = \prod_{u < t} (1 - d\widehat{A}(u)) = \prod_{j: T_j \leq t} \left(1 - \frac{1}{Y(T_j)} \right)$$

- \star Why tied observations:
 - (*i*) events happens in continuous time, but we observe ties because of rounding
 - (ii) events happens in discrete time

Kaplan-Meier with tied observations

★ Recall

$$\widehat{S}(t) = \prod_{u < t} (1 - d\widehat{A}(u)) = \prod_{j: T_j \leq t} \left(1 - \frac{1}{Y(T_j)} \right)$$

- \star Why tied observations:
 - (*i*) events happens in continuous time, but we observe ties because of rounding
 - (ii) events happens in discrete time
- $\star\,$ Denote event times by $\,T_1 < \,T_2 < \dots\,$ and multiplicities $d_1, d_2, \dots\,$
- \star Both (*i*) and (*ii*) results in

$$\widehat{S}(t) = \prod_{j:T_j \leq t} \left(1 - rac{d_j}{Y(T_j)}
ight)$$

* *p*th fractile ξ_p :

$$F(\xi_{p}) = p \Leftrightarrow S(\xi_{p}) = 1 - p$$

$$\star$$
 pth fractile ξ_p :
 $F(\xi_p) = p \Leftrightarrow S(\xi_p) = 1 - p$

 \star Estimator for ξ_p

$$\widehat{\xi}_{p} = \min\{t : \widehat{S}(t) \leq 1 - p\}$$

 \star One can show that

$$\widehat{\mathsf{SD}}[\widehat{\xi}_{\rho}] = \frac{\widehat{\tau}(\widehat{\xi}_{\rho})}{\widehat{f}(\widehat{\xi}_{\rho})}$$

$$\star$$
 pth fractile ξ_p :
 $F(\xi_p) = p \Leftrightarrow S(\xi_p) = 1 - p$

* Estimator for ξ_p

$$\widehat{\xi}_{p} = \min\{t : \widehat{S}(t) \leq 1 - p\}$$

 \star One can show that

$$\widehat{\mathsf{SD}}[\widehat{\xi}_{\rho}] = \frac{\widehat{\tau}(\widehat{\xi}_{\rho})}{\widehat{f}(\widehat{\xi}_{\rho})}$$

* Obtain confidence interval by including in the interval all values ξ_p^0 that rejects $H_0: \xi_p = \xi_p^0$ when tested against $H_1: \xi_p \neq \xi_p^0$

 $\star\,$ The mean is given as

$$\mu = \int_0^\infty t f(t) dt = \int_0^\infty S(t) dt$$

 \star The mean is given as

$$\mu = \int_0^\infty t f(t) dt = \int_0^\infty S(t) dt$$

★ Note:

- μ is very sensitive to the right tail behaviour
- $\widehat{S}(t)$ typically have large variance in the right tail

 \star The mean is given as

$$\mu = \int_0^\infty t f(t) dt = \int_0^\infty S(t) dt$$

★ Note:

- $\,\mu$ is very sensitive to the right tail behaviour
- $\widehat{S}(t)$ typically have large variance in the right tail
- \star Common to estimate the restricted mean

$$\mu_t = \int_0^t S(u) du$$

★ The mean is given as

$$\mu = \int_0^\infty t f(t) dt = \int_0^\infty S(t) dt$$

★ Note:

- $\,\mu$ is very sensitive to the right tail behaviour
- $\widehat{S}(t)$ typically have large variance in the right tail
- \star Common to estimate the restricted mean

$$\mu_t = \int_0^t S(u) du$$

 \star Estimator for μ_t

$$\widehat{\mu}_t = \int_0^t \widehat{S}(u) du$$

★ The mean is given as

$$\mu = \int_0^\infty t f(t) dt = \int_0^\infty S(t) dt$$

★ Note:

- $\,\mu$ is very sensitive to the right tail behaviour
- $\widehat{S}(t)$ typically have large variance in the right tail
- \star Common to estimate the restricted mean

$$\mu_t = \int_0^t S(u) du$$

 \star Estimator for μ_t

$$\widehat{\mu}_t = \int_0^t \widehat{S}(u) du$$

 $\star\,$ It can be shown that an unbiased estimator for $\mathsf{Var}[\widehat{\mu}_t]$ is

$$\widehat{\mathsf{Var}}[\widehat{\mu}_t] = \sum_{j:T_j \leq t} \frac{(\widehat{\mu}_t - \widehat{\mu}_{T_j})^2}{Y(T_j)^2}$$