Plan for this lecture

 $\star\,$ Summary of nonparametric tests for two groups of individuals

– test for two groups, $H_0: lpha_1(t) = lpha_2(t)$

 \star Nonparametric test with only one group av individuals

 $H_0: \alpha(t) = \alpha_0(t)$

Nonparametric test for two groups

* Two counting processes: $N_1(t)$ and $N_2(t)$

$$\lambda_1(t) = \alpha_1(t)Y_1(t)$$
 and $\lambda_2(t) = \alpha_2(t)Y_2(t)$

 \star Want to test $H_0: lpha_1(t) = lpha_2(t)$ for $t \in [0, t_0]$

★ Consider statistic

$$egin{split} Z_1(t_0) &= \int_0^{t_0} L(t) (d\widehat{A}_1(t) - d\widehat{A}_2(t)) \ &= \int_0^{t_0} rac{L(t)}{Y_1(t)} dN_1(t) - \int_0^{t_0} rac{L(t)}{Y_2(t)} dN_2(t) \end{split}$$

Nonparametric test for two groups

 $\star\,$ Two counting processes: ${\it N}_1(t)$ and ${\it N}_2(t)$

$$\lambda_1(t) = \alpha_1(t)Y_1(t)$$
 and $\lambda_2(t) = \alpha_2(t)Y_2(t)$

- \star Want to test $H_0: lpha_1(t) = lpha_2(t)$ for $t \in [0, t_0]$
- ★ Consider statistic

$$egin{aligned} Z_1(t_0) &= \int_0^{t_0} L(t) (d\widehat{A}_1(t) - d\widehat{A}_2(t)) \ &= \int_0^{t_0} rac{L(t)}{Y_1(t)} dN_1(t) - \int_0^{t_0} rac{L(t)}{Y_2(t)} dN_2(t) \end{aligned}$$

* Use Doob-Meyer decompositions of $N_1(t)$ and $N_2(t)$ and get

$$Z_{1}(t_{0}) = \int_{0}^{t_{0}} L(t)(\alpha_{1}(t) - \alpha_{2}(t))dt + \int_{0}^{t_{0}} \frac{L(t)}{Y_{1}(t)} dM_{1}(t) - \int_{0}^{t_{0}} \frac{L(t)}{Y_{2}(t)} dM_{2}(t)$$

Nonparametric test for two groups

* Two counting processes: $N_1(t)$ and $N_2(t)$

$$\lambda_1(t) = \alpha_1(t)Y_1(t)$$
 and $\lambda_2(t) = \alpha_2(t)Y_2(t)$

 \star Want to test $H_0: lpha_1(t) = lpha_2(t)$ for $t \in [0, t_0]$

★ Consider statistic

$$egin{aligned} Z_1(t_0) &= \int_0^{t_0} L(t) (d\widehat{A}_1(t) - d\widehat{A}_2(t)) \ &= \int_0^{t_0} rac{L(t)}{Y_1(t)} dN_1(t) - \int_0^{t_0} rac{L(t)}{Y_2(t)} dN_2(t) \end{aligned}$$

* Use Doob-Meyer decompositions of $N_1(t)$ and $N_2(t)$ and get

$$Z_{1}(t_{0}) = \int_{0}^{t_{0}} L(t)(\alpha_{1}(t) - \alpha_{2}(t))dt + \int_{0}^{t_{0}} \frac{L(t)}{Y_{1}(t)} dM_{1}(t) - \int_{0}^{t_{0}} \frac{L(t)}{Y_{2}(t)} dM_{2}(t)$$

 \star When H_0 is true $Z(t_0)$ is a mean zero martingale

Properties of $Z(t_0)$ when H_0 is true

- $\star \mathsf{E}[Z(t_0)] = 0$
- $\star\,$ Using the predictable variation process $\langle Z \rangle(t_0)$ we found

$$\mathsf{Var}[Z(t_0)] = \mathsf{E}\left[\int_0^{t_0} \frac{L^2(t)(Y_1(t) + Y_2(t))}{Y_1(t)Y_2(t)} \alpha(t) dt\right]$$

* Estimating $\alpha(t)dt$ with $d\hat{A}(t)$ (data from both groups) we get an estimator for $Var[Z(t_0)]$

$$V_{11}(t_0) = \int_0^{t_0} \frac{L^2(t)}{Y_1(t)Y_2(t)} dN_{\bullet}(t)$$

- * It can be shown (Chapter 3.3.5 in ABG) that $Z(t_0)$ is approximately normal
- ★ Use test statistic

$$U(t_0) = \frac{Z(t_0)}{\sqrt{V_{11}(t_0)}}$$

which is approximately standard normal when H_0 is true

- ★ Assume:
 - *n* individuals
 - each individual has the same hazard rate lpha(t)
 - no tied observations
 - N(t): # individuals failed up to (and including) time t
 - Y(t): # individuals at risk just before time t
- * Multiplicative intensity model

$$\lambda(t) = \alpha(t)Y(t)$$

★ Assume:

- *n* individuals
- each individual has the same hazard rate lpha(t)
- no tied observations
- N(t): # individuals failed up to (and including) time t
- Y(t): # individuals at risk just before time t
- * Multiplicative intensity model

$$\lambda(t) = \alpha(t)Y(t)$$

★ Want to test

$$extsf{H}_{ extsf{0}}: lpha(t) = lpha_{ extsf{0}}(t) extsf{ for } t \in [0, t_0]$$

where $\alpha_0(t)$ is a known hazard rate

★ Assume:

- *n* individuals
- each individual has the same hazard rate lpha(t)
- no tied observations
- N(t): # individuals failed up to (and including) time t
- Y(t): # individuals at risk just before time t
- * Multiplicative intensity model

$$\lambda(t) = \alpha(t)Y(t)$$

★ Want to test

$$H_0: lpha(t) = lpha_0(t) ext{ for } t \in [0, t_0]$$

where $\alpha_0(t)$ is a known hazard rate

 \star The test statistic should be based on

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s)$$

★ Assume:

- *n* individuals
- each individual has the same hazard rate lpha(t)
- no tied observations
- N(t): # individuals failed up to (and including) time t
- Y(t): # individuals at risk just before time t
- * Multiplicative intensity model

$$\lambda(t) = \alpha(t)Y(t)$$

★ Want to test

$$\mathcal{H}_{\mathsf{0}}: lpha(t) = lpha_{\mathsf{0}}(t) \; \; \mathsf{for} \; t \in [\mathsf{0}, t_{\mathsf{0}}]$$

where $\alpha_0(t)$ is a known hazard rate

 \star The test statistic should be based on

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s)$$

⋆ Define

$$A_0^\star(t) = \int_0^t J(s) lpha_0(s) ds$$

What we are going to do — step by step

- \star Show that $\widehat{A}(t) A_0^{\star}(t)$ is a mean zero martingale (under H_0)
- \star Find predictable variation process for $\widehat{A}(t) A_0^{\star}(t)$ (under H_0)
- * Define statistic $Z(t_0)$
 - including a weight function L(t)
- * Find mean and variance of $Z(t_0)$ (under H_0)
 - define unbiased estimator for $Var[Z(t_0)]$
- * Argue that $Z(t_0)$ is approximately normal (under H_0)
- * Consider the weight function L(t) = Y(t)

What we are going to do — step by step

- \star Show that $\widehat{A}(t) A_0^{\star}(t)$ is a mean zero martingale (under H_0)
- * Find predictable variation process for $\widehat{A}(t) A_0^{\star}(t)$ (under H_0)
- * Define statistic $Z(t_0)$
 - including a weight function L(t)
- * Find mean and variance of $Z(t_0)$ (under H_0)
 - define unbiased estimator for $Var[Z(t_0)]$
- * Argue that $Z(t_0)$ is approximately normal (under H_0)
- * Consider the weight function L(t) = Y(t)

* First: Review some martingale results we are going to use

Martingale results

* Doob-Meyer decomposition of a counting process N(t)

$$N(t) = \int_0^t \lambda(s) ds + M(t)$$

 \star Predictable variation process for a counting process martingale

$$\langle M \rangle(t) = \int_0^t \lambda(s) ds$$

 A stochastic integral with respect to a mean zero martingale is a mean zero martingale

$$I(t) = \int_0^t H(t) dM(t)$$

 \star Predictable variation process for a stochastic integral

$$\langle I \rangle(t) = \int_0^t H^2(t) d\langle M \rangle(t)$$

* Martingale central limit theorem