Plan for the exercise

- \star Show equivalence of two definitions of martingales
- * Partial sums of zero-mean independent stochastic variables
 - $-\,$ show it is a zero-mean martingale
 - find predictable variation process
 - find optional variation process
- \star Partial sums of conditionally independent stochastic variables

Discrete time martingale

 \star Martingale property:

$$E[M_n | \mathcal{F}_{n-1}] = M_{n-1}, n = 1, 2, \dots$$

$$\mathsf{E}[M_n|\mathcal{F}_m]=M_m, n>m$$

- $\star\,$ Consequences of the martingale property
 - constant mean

$$E[M_n] = E[M_0], n = 1, 2, ...$$

- uncorrelated increments

$$Cov[M_m, M_n - M_m] = 0, n > m$$

Variation processes

 \star Predictable variation process

$$\langle M \rangle_n = \sum_{i=1}^n \operatorname{Var}[M_i - M_{i-1} | \mathcal{F}_{i-1}]$$

* Optional variation process

$$[M]_n = \sum_{i=1}^n (M_i - M_{i-1})^2$$

- * Consequences av the definitions
 - $-M^2-\langle M
 angle$ is a mean zero martingale
 - $M^2 [M]$ is a mean zero martingale

Stopping times and transformations

★ Stopping time T: The event {T = t} is only dependent on what happens up (including) to time t

- stopped process M^T :

$$M_n^T = M_{\min\{n,T\}}$$

- * *H* is predictable based on $\{\mathcal{F}_n\}$ if H_n is known based on \mathcal{F}_{n-1} .
- * Transformation of X by H, $Z = H \bullet X$

$$Z_n = H_0 X_0 + H_1 (X_1 - X_0) + \ldots + H_n (X_n - X_{n-1})$$

- * Consequences of the definitions
 - if *M* mean zero martingale, *H M* mean zero martingale
 ⟨*H M*⟩ = *H*² ⟨*M*⟩
 [*H M*] = *H*² [*M*]

Doob decomposition

- * Assume a process X with respect to $\{\mathcal{F}_n\}$, where $X_0 = 0$
- \star Define *M* and *X*^{\star}

$$M_0 = X_0, \Delta M_n = M_n - M_{n-1} = X_n - \mathsf{E}[X_n | \mathcal{F}_{n-1}], n \ge 1$$

 $X_0^{\star} = 0, X_n^{\star} = \mathsf{E}[X_n | \mathcal{F}_{n-1}], n \ge 1$

- ★ Then we have
 - the Doob decomposition

$$X_n = X_n^{\star} + \Delta M_n$$

- -M is a mean zero martingale
- X^* is predictable with respect to $\{\mathcal{F}_n\}$