Plan for this exercise session

- $\star\,$ In a situation without truncation or censoring
 - simplify the expression for the Kaplan-Meier estimator
 - $-\,$ simplify the expression for the estimator for the variance

Situation

- ★ We assume:
 - *n* individuals
 - each individual has the same lpha(t) and S(t)
 - may have truncation and/or censoring
 - Y(t): number of individuals at risk just before time t
- $\star\,$ Gives a multiplicative intensity process

$$\lambda(t) = \alpha(t)Y(t)$$

* Kaplan-Meier estimator

$$\widehat{S}(t) = \prod_{u < t} (1 - d\widehat{A}(u)) = \prod_{j: T_j \leq t} \left(1 - rac{1}{Y(T_j)} \right)$$

Estimator for $Var[\widehat{S}(t)]$

- $\star\,$ Using martingale theory, we found that
 - $\widehat{S}(t)$ is approximately normal
 - $\operatorname{Var}[\widehat{S}(t)] = S^2(t) \operatorname{Var}[\widehat{A}(t)]$
- * Estimator for $Var[\widehat{S}(t)]$

$$\widehat{ au}^2(t) = \widehat{S}^2(t) \widehat{\sigma}^2(t) = \widehat{S}^2(t) \sum_{j: T_j \leq t} rac{1}{Y(T_j)^2}$$

* Alternative estimator (Greenwood's formula)

$$\widetilde{ au}^2(t) = \widehat{S}^2(t) \sum_{j: \mathcal{T}_j \leq t} rac{1}{Y(\mathcal{T}_j)(Y(\mathcal{T}_j)-1)}$$