Plan for the lecture

- * Consider independent exponentially distributed survival times
 - first without censoring, thereafter with censoring
 - find the Doob-Meyer decomposition
 - find variation processes of the resulting martingale
 - find the variance of the resulting martingale

Continuous time martingale

★ Martingale property:

$$\mathsf{E}[M(t)|\mathcal{F}_s] = M(s) \;\; \mathsf{for} \; s < t$$

- ⋆ Consequences of the martingale property
 - constant mean

$$\mathsf{E}[M(t)] = \mathsf{E}[M(0)]$$

- uncorrelated increments

$$Cov[M(t)-M(s), M(v)-M(u)] = 0$$
 for $0 \le s < t \le u < v \le \tau$

Variation processes

* Predictable variation process

$$\langle M \rangle(t) = \lim_{n \to \infty} \sum_{k=1}^{n} \text{Var}[M_k - M_{k-1} | \mathcal{F}_{\frac{(k-1)t}{n}}]$$

- informally: $d\langle M \rangle(t) = \text{Var}[dM(t)|\mathcal{F}_{t-}]$
- ⋆ Optional variation process

$$[M](t) = \lim_{n \to \infty} \sum_{k=1}^{n} (M_k - M_{k-1})^2$$

- ★ Consequences av the definitions
 - $M^2 \langle M \rangle$ is a mean zero martingale
 - $-M^2-[M]$ is a mean zero martingale

Covariation processes

* Predictable covariation process

$$\langle M_1, M_2 \rangle(t) = \lim_{n \to \infty} \sum_{k=1}^n \mathsf{Cov}[\Delta M_{1k}, \Delta M_{2k} | \mathcal{F}_{\frac{(k-1)t}{n}}]$$

⋆ Optional covariation process

$$[M_1, M_2](t) = \lim_{n \to \infty} \sum_{k=1}^{n} (\Delta M_{1k})(\Delta M_{k2})$$

- * Consequences av the definitions
 - $M_1M_2 \langle M_1, M_2 \rangle$ is a mean zero martingale
 - $M_1M_2 [M_1, M_2]$ is a mean zero martingale
 - $-\langle aM_1, M_2 \rangle = a\langle M_1, M_2 \rangle$ and so on
 - $[aM_1, M_2] = a[M_1, M_2]$ and so on
 - $-\langle M,M\rangle=\langle M\rangle$ and [M,M]=[M]

Stochastic integral

* Stochastic integral

$$I(t) = \int_0^t H(s)dM(s) = \lim_{n \to \infty} \sum_{k=1}^n H_k(M_k - M_{k-1})$$

- Consequences of the definitions
 - -I(t) is a mean zero martingale
 - $-\langle \int HdM \rangle = \int H^2 d\langle M \rangle$
 - $\left[\int H dM \right] = \int H^2 d[M]$
 - $\langle \int H_1 dM_1, \int H_2 dM_2 \rangle = \int H_1 H_2 d\langle M_1, M_2 \rangle$
 - $[\int H_1 dM_1, \int H_2 dM_2] = \int H_1 H_2 d[M_1, M_2]$

Doob-Meyer decomposition

 \star Sub-martingale: X is a sub-martingale if

$$\mathsf{E}[X(t)|\mathcal{F}_s] \geq X(s) \;\; \mathsf{for} \; s < t$$

- i.e. X(t) tends to increase
- ★ Doob-Meyer: Assume X is a sub-martingale with respect to $\{\mathcal{F}_t\}$, where X(0)=0. Then there exists a unique decomposition

$$X = X^* + M$$

where

- X^* is non-decreasing and predictable (the compensator for X)
- M is a zero-mean martingale
- ★ Informally:
 - $-dX^*(t) = E[dX(t)|\mathcal{F}_{t-}]$ (predictable from the past)
 - $-dM(t) = dX(t) E[dX(t)|\mathcal{F}_{t-}]$ (inovation/surprise)

The Poisson process

- * N(t): number of events in [0,t] in a homogeneous Poisson process with intensity λ
- ⋆ Doob-Meyer decomposition

$$N(t) = N^{\star}(t) + M(t)$$

where

- $-N^{\star}(t)=\lambda t$
- $M(t) = N(t) \lambda t$

Counting processes

- * N(t): A counting process, N(t) adapted to $\{\mathcal{F}_t\}$
 - right continuous
 - jumps of size one
 - constant between jumps
- * Recall informal definition of intensity process

$$\lambda(t)dt = P(dN(t) = 1|\mathcal{F}_{t-}) = \mathsf{E}[dN(t)|\mathcal{F}_{t-}]$$

* Precise definition of intensity process by Doob-Meyer

$$N(t) = \Lambda(t) + M(t)$$

 \star When $\Lambda(t)$ is absolutely continuous

$$\Lambda(t) = \int_0^t \lambda(s) ds$$

Variation processes

$$\langle M \rangle(t) = \Lambda(t) = \int_0^t \lambda(s) ds$$
 and $[M](t) = N(t)$

Sample paths

