Plan for the lecture

* Brief summary of the Nelson—Aalen estimator
— and its properties
* Look briefly at some examples in ABG

— Example 3.1 (Figures 3.1, 3.2 and 3.3, pages 73, 75)
— Example 3.2 (Figures 3.4, page 76)

* Do two groups have different hazard rates?

— formulated as a hypothesis test



Multiplicative intensity model

* Multiplicative intensity model

A(t) = a(t)Y(t)
— Y/(t): predictable process

* Frequent situation leading to a multiplicative intensity model

n individuals

— each individual has the same hazard rate «(t)

— may have truncation and/or censoring

Y (t): number of individuals at risk just before time t



Derivation of the Nelson—Aalen estimator

* N(t): counting process with A\(t) = «(t) Y (t)
* Used Doob-Meyer decomposition for N(t) to obtain:

A(t) — A*(t) = /0 \J/((SS))dM(s)

J(t)=1(Y(t) > 0)
A(t) = [, a(t)dt
A*(t) =[5 J(t)a(t)dt

A(t) = Jo 7 dN(s)

* Nelson—Aalen estimator for A(t):
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Estimator for Var[A(t)]

* Start with the martingale

Al) — A (1) = / \J/((SS))dM(s)
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* Optional variation process for A(t) — A*(t)
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* Since for martingales Var[M(t)] = E[[M](t)] an unbiased estimator
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for Var[A(t) — A*(t)] is
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Nelson—Aalen with tied observations

* Recall
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* Why tied observations:
(i) events happens in continuous time, but we observe ties
because of rounding
(i) events happens in discrete time

*

Denote event times by T; < T < ... and multiplicities dy, d>, . ..

* Assuming (i) we get
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Assuming (ii) we get (we haven't discussed the reason for 2(t))
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Wiener process and Gaussian martingales

* W = {W(t); t > 0} is a Wiener process if
- W(0)=0
for any s < t: W(t) — W(s) ~ N(0,t —s)
independent increments
continuous sample paths

* Gaussian martingale

let V/(t) be a strictly increasing continuous function with V/(0)
let W = {W(t),t > 0} be a Wiener process

- let U(t) = W(V(t))

then U(t) is a Gaussian martingale, i.e.

+ U(t) is a mean zero martingale

- UN(E) = V()



Rebolledo’s theorem
% Theorem: Let M(")(t) be a sequence of mean zero martingales
defined on t € [0, 7], and assume
(i) (MM)(t) = V(t) in probability when n — oo for all t € [0, 7]
(ii) the sizes of the jumps of M(") goes to zero as n — oo
Then M("(t) converges in distribution to the mean zero Gaussian
martingale U(t) = W(V(t))

* If
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where H(")(t) is predictable and
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is a counting process martingale, sufficient conditions for (i) and (/)
are
(i) (HM(5))2A(M(s) — v(s) > 0 when n — oo
(i) H™(s) — 0 when n — oo,
where V(t) = fot v(s)ds.
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Large sample properties for A(t)

* Assume:

n individuals

each individual has the same hazard rate «(t)

— may have truncation and/or censoring

— Y(t) is number of individuals at risk just before time t

*

Multiplicative intensity process: A(t) = «(t) Y (t)

Y(t)

T—>y(t)>0 when n— oo

* Assume also

*

Then Rebolledo’s theorem gives that
V(A(t) — A*(2))

converges to a Gaussian martingale U(t) with
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*

Thus, for large n: A\(t) ~ N(A(t),o%(t))



