Plan for the lecture

- * Brief summary of the Nelson-Aalen estimator
 - and its properties
- ★ Look briefly at some examples in ABG
 - Example 3.1 (Figures 3.1, 3.2 and 3.3, pages 73, 75)
 - Example 3.2 (Figures 3.4, page 76)
- * Do two groups have different hazard rates?
 - formulated as a hypothesis test

Multiplicative intensity model

* Multiplicative intensity model

$$\lambda(t) = \alpha(t)Y(t)$$

- Y(t): predictable process
- * Frequent situation leading to a multiplicative intensity model
 - n individuals
 - each individual has the same hazard rate $\alpha(t)$
 - may have truncation and/or censoring
 - Y(t): number of individuals at risk just before time t

Derivation of the Nelson-Aalen estimator

- * N(t): counting process with $\lambda(t) = \alpha(t)Y(t)$
- \star Used Doob-Meyer decomposition for N(t) to obtain:

$$\widehat{A}(t) - A^{\star}(t) = \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

$$- J(t) = I(Y(t) > 0)$$

$$-A(t)=\int_0^t \alpha(t)dt$$

$$-A^{\star}(t)=\int_{0}^{t}J(t)\alpha(t)dt$$

$$-\widehat{A}(t) = \int_0^t \frac{J(s)}{V(s)} dN(s)$$

* Nelson-Aalen estimator for A(t):

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s) = \sum_{i:T_i \le t} \frac{1}{Y(T_i)}$$

Estimator for $Var[\widehat{A}(t)]$

* Start with the martingale

$$\widehat{A}(t) - A^{\star}(t) = \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

* Optional variation process for $\widehat{A}(t) - A^*(t)$

$$[\widehat{A} - A^*](t) = \int_0^t \frac{J(s)}{Y(s)^2} dN(s) = \sum_{j:T_i \le t} \frac{1}{Y(T_j)^2}$$

* Since for martingales Var[M(t)] = E[[M](t)] an unbiased estimator for $Var[\widehat{A}(t) - A^*(t)]$ is

$$\widehat{\sigma}^2(t) = \sum_{j: T_j \le t} \frac{1}{Y(T_j)^2}$$

Nelson-Aalen with tied observations

⋆ Recall

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s), \widehat{\sigma}^2(t) = \int_0^t \frac{J(s)}{Y(s)^2} dN(s)$$

- ★ Why tied observations:
 - (i) events happens in continuous time, but we observe ties because of rounding
 - (ii) events happens in discrete time
- \star Denote event times by $T_1 < T_2 < \dots$ and multiplicities d_1, d_2, \dots
- \star Assuming (i) we get

$$\widehat{A}(t) = \sum_{j: T_j \le t} \left[\sum_{l=0}^{d_j-1} \frac{1}{Y(T_j) - l} \right], \widehat{\sigma}^2(t) = \sum_{j: T_j \le t} \left[\sum_{l=0}^{d_j-1} \frac{1}{(Y(T_j) - l)^2} \right]$$

* Assuming (ii) we get (we haven't discussed the reason for $\hat{\sigma}^2(t)$)

$$\widehat{A}(t) = \sum_{i:T_i \leq t} \frac{d_j}{Y(T_j)}, \widehat{\sigma}^2(t) = \sum_{i:T_i \leq t} \frac{(Y(T_j) - d_j)d_j}{Y(T_j)^3}$$

Wiener process and Gaussian martingales

- \star *W* = {*W*(*t*); *t* ≥ 0} is a Wiener process if
 - W(0) = 0
 - for any s < t: $W(t) W(s) \sim N(0, t s)$
 - independent increments
 - continuous sample paths
- ⋆ Gaussian martingale
 - let V(t) be a strictly increasing continuous function with V(0)
 - let $W = \{W(t), t \ge 0\}$ be a Wiener process
 - let U(t) = W(V(t))
 - then U(t) is a Gaussian martingale, i.e.
 - + U(t) is a mean zero martingale
 - $+ \langle U \rangle(t) = V(t)$

Rebolledo's theorem

* Theorem: Let $\widetilde{M}^{(n)}(t)$ be a sequence of mean zero martingales defined on $t \in [0, \tau]$, and assume

(i) $\langle \widetilde{M}^{(n)} \rangle (t) \to V(t)$ in probability when $n \to \infty$ for all $t \in [0, \tau]$

(ii) the sizes of the jumps of $\widetilde{M}^{(n)}$ goes to zero as $n \to \infty$

Then $\widetilde{M}^{(n)}(t)$ converges in distribution to the mean zero Gaussian martingale U(t)=W(V(t))

* If

$$\widetilde{M}^{(n)}(t) = \int_0^t H^{(n)}(s) dM^{(n)}(s)$$

where $H^{(n)}(t)$ is predictable and

$$M^{(n)}(t) = N^n(t) - \int_0^t \lambda^{(n)}(s)ds$$

is a counting process martingale, sufficient conditions for (i) and (ii) are

(i)
$$(H^{(n)}(s))^2 \lambda^{(n)}(s) \rightarrow v(s) > 0$$
 when $n \rightarrow \infty$
(ii) $H^{(n)}(s) \rightarrow 0$ when $n \rightarrow \infty$,

where $V(t) = \int_0^t v(s) ds$.

Large sample properties for $\widehat{A}(t)$

- * Assume:
 - n individuals
 - each individual has the same hazard rate $\alpha(t)$
 - may have truncation and/or censoring
 - -Y(t) is number of individuals at risk just before time t
- * Multiplicative intensity process: $\lambda(t) = \alpha(t)Y(t)$
- ⋆ Assume also

$$\frac{Y(t)}{n} \to y(t) > 0$$
 when $n \to \infty$

* Then Rebolledo's theorem gives that

$$\sqrt{n}(\widehat{A}(t) - A^{\star}(t))$$

converges to a Gaussian martingale U(t) with

$$\langle U \rangle(t) = \int_0^t \frac{\alpha(s)}{y(s)} ds$$

* Thus, for large n: $\widehat{A}(t) \approx N(A(t), \sigma^2(t))$