
Plan for the lecture

? Brief summary of the Nelson–Aalen estimator

– and its properties

? Look briefly at some examples in ABG

– Example 3.1 (Figures 3.1, 3.2 and 3.3, pages 73, 75)
– Example 3.2 (Figures 3.4, page 76)

? Do two groups have different hazard rates?

– formulated as a hypothesis test



Multiplicative intensity model

? Multiplicative intensity model

λ(t) = α(t)Y (t)

– Y (t): predictable process

? Frequent situation leading to a multiplicative intensity model

– n individuals
– each individual has the same hazard rate α(t)
– may have truncation and/or censoring
– Y (t): number of individuals at risk just before time t



Derivation of the Nelson–Aalen estimator

? N(t): counting process with λ(t) = α(t)Y (t)

? Used Doob-Meyer decomposition for N(t) to obtain:

Â(t)− A?(t) =

∫ t

0

J(s)

Y (s)
dM(s)

– J(t) = I (Y (t) > 0)
– A(t) =

∫ t

0 α(t)dt

– A?(t) =
∫ t

0 J(t)α(t)dt

– Â(t) =
∫ t

0
J(s)
Y (s)dN(s)

? Nelson–Aalen estimator for A(t):

Â(t) =

∫ t

0

J(s)

Y (s)
dN(s) =

∑
j :Tj≤t

1
Y (Tj)



Estimator for Var[Â(t)]

? Start with the martingale

Â(t)− A?(t) =

∫ t

0

J(s)

Y (s)
dM(s)

? Optional variation process for Â(t)− A?(t)

[Â− A?](t) =

∫ t

0

J(s)

Y (s)2
dN(s) =

∑
j :Tj≤t

1
Y (Tj)2

? Since for martingales Var[M(t)] = E[[M](t)] an unbiased estimator
for Var[Â(t)− A?(t)] is

σ̂2(t) =
∑

j :Tj≤t

1
Y (Tj)2



Nelson–Aalen with tied observations
? Recall

Â(t) =

∫ t

0

J(s)

Y (s)
dN(s), σ̂2(t) =

∫ t

0

J(s)

Y (s)2
dN(s)

? Why tied observations:
(i) events happens in continuous time, but we observe ties

because of rounding
(ii) events happens in discrete time

? Denote event times by T1 < T2 < . . . and multiplicities d1, d2, . . .

? Assuming (i) we get

Â(t) =
∑

j :Tj≤t

dj−1∑
l=0

1
Y (Tj)− l

 , σ̂2(t) =
∑

j :Tj≤t

dj−1∑
l=0

1
(Y (Tj)− l)2


? Assuming (ii) we get (we haven’t discussed the reason for σ̂2(t))

Â(t) =
∑

j :Tj≤t

dj
Y (Tj)

, σ̂2(t) =
∑

j :Tj≤t

(Y (Tj)− dj)dj
Y (Tj)3



Wiener process and Gaussian martingales

? W = {W (t); t ≥ 0} is a Wiener process if

– W (0) = 0
– for any s < t: W (t)−W (s) ∼ N(0, t − s)
– independent increments
– continuous sample paths

? Gaussian martingale

– let V (t) be a strictly increasing continuous function with V (0)
– let W = {W (t), t ≥ 0} be a Wiener process
– let U(t) = W (V (t))
– then U(t) is a Gaussian martingale, i.e.

+ U(t) is a mean zero martingale
+ 〈U〉(t) = V (t)



Rebolledo’s theorem
? Theorem: Let M̃(n)(t) be a sequence of mean zero martingales

defined on t ∈ [0, τ ], and assume

(i) 〈M̃(n)〉(t)→ V (t) in probability when n→∞ for all t ∈ [0, τ ]
(ii) the sizes of the jumps of M̃(n) goes to zero as n→∞
Then M̃(n)(t) converges in distribution to the mean zero Gaussian
martingale U(t) = W (V (t))

? If

M̃(n)(t) =

∫ t

0
H(n)(s)dM(n)(s)

where H(n)(t) is predictable and

M(n)(t) = Nn(t)−
∫ t

0
λ(n)(s)ds

is a counting process martingale, sufficient conditions for (i) and (ii)
are
(i) (H(n)(s))2λ(n)(s)→ v(s) > 0 when n→∞
(ii) H(n)(s)→ 0 when n→∞,
where V (t) =

∫ t

0 v(s)ds.



Large sample properties for Â(t)
? Assume:

– n individuals
– each individual has the same hazard rate α(t)
– may have truncation and/or censoring
– Y (t) is number of individuals at risk just before time t

? Multiplicative intensity process: λ(t) = α(t)Y (t)

? Assume also
Y (t)

n
→ y(t) > 0 when n→∞

? Then Rebolledo’s theorem gives that
√
n(Â(t)− A?(t))

converges to a Gaussian martingale U(t) with

〈U〉(t) =
∫ t

0

α(s)

y(s)
ds

? Thus, for large n: Â(t) ≈ N(A(t), σ2(t))


