Plan for the exercise

- * Show equivalence of two definitions of martingales
- * Partial sums of zero-mean independent stochastic variables
 - show it is a zero-mean martingale
 - find predictable variation process
 - find optional variation process
- * Partial sums of conditionally independent stochastic variables

Discrete time martingale

* Martingale property:

$$E[M_n|\mathcal{F}_{n-1}] = M_{n-1}, n = 1, 2, ...$$

equivalently

$$\mathsf{E}[M_n|\mathcal{F}_m] = M_m, n > m$$

- * Consequences of the martingale property
 - constant mean

$$E[M_n] = E[M_0], n = 1, 2, ...$$

uncorrelated increments

$$Cov[M_m, M_n - M_m] = 0, n > m$$

Variation processes

* Predictable variation process

$$\langle M \rangle_n = \sum_{i=1}^n \mathsf{Var}[M_i - M_{i-1}|\mathcal{F}_{i-1}] = \sum_{i=1}^n \mathsf{E}\left[\left(M_i - M_{i-1}\right)^2\middle|\mathcal{F}_{i-1}\right]$$

⋆ Optional variation process

$$[M]_n = \sum_{i=1}^n (M_i - M_{i-1})^2$$

- * Consequences av the definitions
 - $-M^2-\langle M\rangle$ is a mean zero martingale
 - $-M^2-[M]$ is a mean zero martingale

Stopping times and transformations

- * Stopping time T: The event $\{T = t\}$ is only dependent on what happens up (including) to time t
 - stopped process M^T :

$$M_n^T = M_{\min\{n,T\}}$$

- * H is predictable based on $\{\mathcal{F}_n\}$ if H_n is known based on \mathcal{F}_{n-1} .
- * Transformation of X by H, $Z = H \bullet X$

$$Z_n = H_0 X_0 + H_1 (X_1 - X_0) + \ldots + H_n (X_n - X_{n-1})$$

- * Consequences of the definitions
 - if M mean zero martingale, $H \bullet M$ mean zero martingale
 - $-\langle H \bullet M \rangle = H^2 \bullet \langle M \rangle$
 - $[H \bullet M] = H^2 \bullet [M]$

Doob decomposition

- * Assume a process X with respect to $\{\mathcal{F}_n\}$, where $X_0=0$
- \star Define M and X^{\star}

$$M_0 = X_0, \Delta M_n = M_n - M_{n-1} = X_n - E[X_n | \mathcal{F}_{n-1}], n \ge 1$$

$$X_0^* = 0, X_n^* = E[X_n | \mathcal{F}_{n-1}], n \ge 1$$

- * Then we have
 - the Doob decomposition

$$X_n = X_n^{\star} + \Delta M_n$$

- M is a mean zero martingale
- X^* is predictable with respect to $\{\mathcal{F}_n\}$