Plan for the exercise

- $\star\,$ Nelson-Aalen for an aggregated Poisson process
 - show that it has a multiplicative intensity process
 - write down the Nelson-Aalen estimator
 - in a simple example: compute and plot the Nelson-Aalen estimator and confidence intervals
- $\star\,$ When we have two populations
 - how to evaluate graphically whether the two hazard rates seem to be proportional?

Multiplicative intensity model

* Multiplicative intensity model

$$\lambda(t) = \alpha(t)Y(t)$$

- Y(t): predictable process

- \star Frequent situation leading to a multiplicative intensity model
 - *n* individuals
 - each individual has the same hazard rate $\alpha(t)$
 - may have truncation and/or censoring
 - Y(t): number of individuals at risk just before time t
- * Are two hazard rates proportional?

Nelson-Aalen estimator

- \star *N*(*t*): counting process with $\lambda(t) = \alpha(t)Y(t)$
- ⋆ Notation:

$$- J(t) = \mathbb{I}(Y(t) > 0)$$

- $A(t) = \int_0^t \alpha(t) dt$
- $A^*(t) = \int_0^t J(t)\alpha(t) dt$

* Nelson–Aalen estimator for A(t):

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s) = \sum_{j:T_j \le t} \frac{1}{Y(T_j)}$$

$$\star$$
 Recall: $E[\widehat{A}(t) - A^{\star}(t)] = 0$

 $\star\,$ Using the optional variation process we found

$$\operatorname{Var}[\widehat{A}(t) - A^{\star}(t)] = E\left[\int_{0}^{t} \frac{J(s)}{Y^{2}(s)} dN(s)\right]$$

 $\star\,$ So an unbiased estimator for ${\sf Var}[\widehat{A}(t)-A^{\star}(t)]$ is

$$\widehat{\sigma}^2(t) = \int_0^t rac{J(s)}{Y^2(s)} d\mathsf{N}(s) = \sum_{j:T_j \leq t} rac{1}{Y^2(T_j^2)}$$

Large sample properties for $\widehat{A}(t)$

★ Assume:

- *n* individuals
- each individual has the same hazard rate lpha(t)
- may have truncation and/or censoring
- Y(t) is number of individuals at risk just before time t
- * Multiplicative intensity process: $\lambda(t) = \alpha(t)Y(t)$
- ★ Assume also

$$rac{Y(t)}{n}
ightarrow y(t) > 0 \hspace{0.2cm} ext{when} \hspace{0.2cm} n
ightarrow \infty$$

★ Then Rebolledo's theorem gives that

$$\sqrt{n}(\widehat{A}(t) - A^{\star}(t))$$

converges to a Gaussian martingale U(t) with

$$\langle U \rangle(t) = \int_0^t \frac{\alpha(s)}{y(s)} ds$$

 \star Thus, for large *n*: $\widehat{A}(t) pprox \mathcal{N}(A(t), \sigma^2(t))$

- * Let $N_i = \{N_i(t); t \in [0, \tau]\}$ for i = 1, ..., n be *n* independent nonhomogeneous Poisson processes, all with the same intensity function $\alpha(t)$.
- * Let $A(t) = \int_0^t \alpha(s) ds$ and let $\{\mathcal{F}_t\}$ contain information about all the N_i processes up to and including time t.
- * Assume the N_i process is observed only up to time $\tau_i \leq \tau$.
- ★ For $t \in [0, \tau]$ define

$$N(t) = \sum_{i=1}^{n} N_i(\min(t,\tau_i)).$$

- * Let $N_i = \{N_i(t); t \in [0, \tau]\}$ for i = 1, ..., n be *n* independent nonhomogeneous Poisson processes, all with the same intensity function $\alpha(t)$.
- * Let $A(t) = \int_0^t \alpha(s) ds$ and let $\{\mathcal{F}_t\}$ contain information about all the N_i processes up to and including time t.
- * Assume the N_i process is observed only up to time $\tau_i \leq \tau$.
- ★ For $t \in [0, \tau]$ define

$$N(t) = \sum_{i=1}^{n} N_i(\min(t, \tau_i)).$$

a) Show that $\tilde{N}_i(t) = N_i(\min(t, \tau_i))$ has a multiplicative intensity process.

- * Let $N_i = \{N_i(t); t \in [0, \tau]\}$ for i = 1, ..., n be *n* independent nonhomogeneous Poisson processes, all with the same intensity function $\alpha(t)$.
- * Let $A(t) = \int_0^t \alpha(s) ds$ and let $\{\mathcal{F}_t\}$ contain information about all the N_i processes up to and including time t.
- * Assume the N_i process is observed only up to time $\tau_i \leq \tau$.
- ★ For $t \in [0, \tau]$ define

$$N(t) = \sum_{i=1}^{n} N_i(\min(t, \tau_i)).$$

- a) Show that $\widetilde{N}_i(t) = N_i(\min(t, \tau_i))$ has a multiplicative intensity process.
- b) Show that N(t) has a multiplicative intensity process.

- * Let $N_i = \{N_i(t); t \in [0, \tau]\}$ for i = 1, ..., n be *n* independent nonhomogeneous Poisson processes, all with the same intensity function $\alpha(t)$.
- * Let $A(t) = \int_0^t \alpha(s) ds$ and let $\{\mathcal{F}_t\}$ contain information about all the N_i processes up to and including time t.
- * Assume the N_i process is observed only up to time $\tau_i \leq \tau$.
- ★ For $t \in [0, \tau]$ define

$$N(t) = \sum_{i=1}^{n} N_i(\min(t, \tau_i)).$$

- a) Show that $\tilde{N}_i(t) = N_i(\min(t, \tau_i))$ has a multiplicative intensity process.
- b) Show that N(t) has a multiplicative intensity process.
- c) Write down an expression for the Nelson-Aalen estimator for A(t) and the associated variance estimator.

* Assume n = 3, $\tau_1 = 20$, $\tau_2 = 30$ and $\tau_3 = 10$. Assume we have observed event times at 5 12 and 17 for process N_1 , 9 and 23 for process N_2 , 4 for process N_3 .

- * Assume n = 3, $\tau_1 = 20$, $\tau_2 = 30$ and $\tau_3 = 10$. Assume we have observed event times at 5 12 and 17 for process N_1 , 9 and 23 for process N_2 , 4 for process N_3 .
- d) Calculate the Nelson-Aalen estimator for A(t) by hand, and draw a graph.

- * Assume n = 3, $\tau_1 = 20$, $\tau_2 = 30$ and $\tau_3 = 10$. Assume we have observed event times at 5 12 and 17 for process N_1 , 9 and 23 for process N_2 , 4 for process N_3 .
- d) Calculate the Nelson-Aalen estimator for A(t) by hand, and draw a graph.
- e) Calculate also the estimate for the variance and draw a 95% confidence interval for A(t).

 $\star\,$ Assume we have observations from two populations

- assume multiplicative intensity model for each population

$$\lambda_1(t) = \alpha_1(t)Y_1(t)$$
 and $\lambda_2(t) = \alpha_2(t)Y_2(t)$

- the Nelson-Aalen estimator gives

$$\widehat{A}_1(t)$$
 and $\widehat{A}_2(t)$

 \star Assume we have observations from two populations

- assume multiplicative intensity model for each population

$$\lambda_1(t) = \alpha_1(t) Y_1(t)$$
 and $\lambda_2(t) = \alpha_2(t) Y_2(t)$

- the Nelson-Aalen estimator gives

$$\widehat{A}_1(t)$$
 and $\widehat{A}_2(t)$

 \star Question: How can we evaluate whether it is reasonable to assume

 $\alpha_1(t) = k\alpha_2(t)$ for some value k > 0?

- what type of plot can/should we look at?