Plan for the lecture

- \star Show that $M_n^2 \langle M \rangle_n$ is a zero-mean martingale
- * Find the Doob decomposition of a Markov chain
 - predictable and optional variation processes
- ★ Find the Doob decomposition of another chain

Discrete time martingale

* Martingale property:

$$E[M_n|\mathcal{F}_{n-1}] = M_{n-1}, n = 1, 2, ...$$

equivalently

$$\mathsf{E}[M_n|\mathcal{F}_m] = M_m, n > m$$

- ★ Consequences of the martingale property
 - constant mean

$$E[M_n] = E[M_0], n = 1, 2, ...$$

uncorrelated increments

$$Cov[M_m, M_n - M_m] = 0, n > m$$

Variation processes

* Predictable variation process

$$\langle M \rangle_n = \sum_{i=1}^n \mathsf{Var}[M_i - M_{i-1}|\mathcal{F}_{i-1}]$$

* Optional variation process

$$[M]_n = \sum_{i=1}^n (M_i - M_{i-1})^2$$

- ⋆ Consequences av the definitions
 - $-M^2-\langle M \rangle$ is a mean zero martingale
 - $-M^2-[M]$ is a mean zero martingale

Stopping times and transformations

- * Stopping time T: The event $\{T = t\}$ is only dependent on what happens up (including) to time t
 - stopped process M^T :

$$M_n^T = M_{\min\{n,T\}}$$

- \star *H* is predictable based on $\{\mathcal{F}_n\}$ if H_n is known based on \mathcal{F}_{n-1} .
- * Transformation of X by H, $Z = H \bullet X$

$$Z_n = H_0 X_0 + H_1 (X_1 - X_0) + \ldots + H_n (X_n - X_{n-1})$$

- * Consequences of the definitions
 - if M mean zero martingale, $H \bullet M$ mean zero martingale
 - $\langle H \bullet M \rangle = H^2 \bullet \langle M \rangle$
 - $[H \bullet M] = H^2 \bullet [M]$

Doob decomposition

- * Assume a process X with respect to $\{\mathcal{F}_n\}$, where $X_0=0$
- \star Define M and X^{\star}

$$M_0 = X_0, \Delta M_n = M_n - M_{n-1} = X_n - \mathbb{E}[X_n | \mathcal{F}_{n-1}], n \ge 1$$

$$X_0^* = 0, X_n^* = \mathbb{E}[X_n | \mathcal{F}_{n-1}], n \ge 1$$

- * Then we have
 - the Doob decomposition

$$X_n = X_n^* + \Delta M_n$$

- M is a mean zero martingale
- X^* is predictable with respect to $\{\mathcal{F}_n\}$

A Markov chain example

* Let $X = (X_0, X_1, X_2, ...)$ be a Markov chain with $X_i \in \{0, 1, 2, ...\}$, $X_0 = 0$ and

$$P(X_n = x | X_{n-1} = x_{n-1}) = \begin{cases} p & \text{for } x = x_{n-1} + 1 \\ 1 - p & \text{for } x = x_{n-1} \\ 0 & \text{otherwise.} \end{cases}$$

⋆ Find the Doob decomposition of X

Variational process for M

⋆ Recall:

$$P(X_n = x | X_{n-1} = x_{n-1}) = \begin{cases} p & \text{for } x = x_{n-1} + 1\\ 1 - p & \text{for } x = x_{n-1}\\ 0 & \text{otherwise.} \end{cases}$$

$$M_n - M_{n-1} = (X_n - X_{n-1}) - p$$

Sample paths of the variational processes

Another stochastic process example

- * Let $X = (X_0, X_1, X_2, ...)$ be a stochastic process with $X_i \in \{0, \pm 1, \pm 2, ...\}, X_0 = 0$
- \star U_1, U_2, \ldots independent and $P(U_i = 1) = p$, $P(X_i = 0) = 1 p$
- \star Let $X_1 = X_0 + U_1$, and for $n = 2, 3, \dots$

$$X_n = X_{n-1} + U_n(1 - 3U_{n-1})$$

⋆ Find the Doob decomposition of X

Variational process for M

* Recall:
$$M_n - M_{n-1} = (U_n - p)(1 - 3U_{n-1})$$

Sample paths of the variational processes

