
Plan for the lecture

⋆ Brief summary of the Nelson-Aalen estimator

⋆ Do two groups have different hazard rates?

– formulated as a hypothesis test

⋆ Using a transformation to find an alternative confidence interval



Multiplicative intensity model

⋆ Multiplicative intensity model

λ(t) = α(t)Y (t)

– Y (t): predictable process

⋆ Frequent situation leading to a multiplicative intensity model

– n individuals
– each individual has the same hazard rate α(t)
– may have truncation and/or censoring
– Y (t): number of individuals at risk just before time t



Nelson–Aalen estimator
⋆ N(t): counting process with λ(t) = α(t)Y (t)

⋆ Notation:
– J(t) = I(Y (t) > 0)
– A(t) =

∫ t

0 α(t)dt

– A⋆(t) =
∫ t

0 J(t)α(t)dt

⋆ Nelson–Aalen estimator for A(t):

Â(t) =

∫ t

0

J(s)

Y (s)
dN(s) =

∑
j :Tj≤t

1
Y (Tj)

⋆ Recall: E [Â(t)− A⋆(t)] = 0

⋆ Using the optional variation process we found

Var[Â(t)− A⋆(t)] = E

[∫ t

0

J(s)

Y 2(s)
dN(s)

]
⋆ So an unbiased estimator for Var[Â(t)− A⋆(t)] is

σ̂2(t) =

∫ t

0

J(s)

Y 2(s)
dN(s) =

∑
j :Tj≤t

1
Y 2(T 2

j )
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⋆ Recall: E [Â(t)− A⋆(t)] = 0

⋆ Using the optional variation process we found
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Nelson–Aalen with tied observations
⋆ Recall

Â(t) =

∫ t

0

J(s)

Y (s)
dN(s), σ̂2(t) =

∫ t

0

J(s)

Y (s)2
dN(s)

⋆ Why tied observations:
(i) events happens in continuous time, but we observe ties

because of rounding
(ii) events happens in discrete time

⋆ Denote event times by T1 < T2 < . . . and multiplicities d1, d2, . . .

⋆ Assuming (i) we get

Â(t) =
∑

j :Tj≤t

dj−1∑
ℓ=0

1
Y (Tj)− ℓ

 , σ̂2(t) =
∑

j :Tj≤t

dj−1∑
ℓ=0

1
(Y (Tj)− ℓ)2


⋆ Assuming (ii) we get (we haven’t discussed the reason for σ̂2(t))

Â(t) =
∑

j :Tj≤t

dj
Y (Tj)

, σ̂2(t) =
∑

j :Tj≤t

(Y (Tj)− dj)dj
Y (Tj)3



Large sample properties for Â(t)
⋆ Assume:

– n individuals
– each individual has the same hazard rate α(t)
– may have truncation and/or censoring
– Y (t) is number of individuals at risk just before time t

⋆ Multiplicative intensity process: λ(t) = α(t)Y (t)

⋆ Assume also
Y (t)

n
→ y(t) > 0 when n → ∞

⋆ Then Rebolledo’s theorem gives that
√
n(Â(t)− A⋆(t))

converges to a Gaussian martingale U(t) with

⟨U⟩(t) =
∫ t

0

α(s)

y(s)
ds

⋆ Thus, for large n: Â(t) ≈ N(A(t), σ2(t))



Stochastic integral

⋆ Stochastic integral

I(t) =
∫ t

0
H(s)dM(s) = lim

n→∞

n∑
k=1

Hk(Mk −Mk−1)

⋆ Consequences of the definitions

– I(t) is a mean zero martingale

– ⟨
∫
HdM⟩ =

∫
H2d⟨M⟩

– [
∫
HdM] =

∫
H2d [M]

– ⟨
∫
H1dM1,

∫
H2dM2⟩ =

∫
H1H2d⟨M1,M2⟩

– [
∫
H1dM1,

∫
H2dM2] =

∫
H1H2d [M1,M2]



Counting processes
⋆ N(t): A counting process, N(t) adapted to {Ft}

– right continuous
– jumps of size one
– constant between jumps

⋆ Recall informal definition of intensity process

λ(t)dt = P(dN(t) = 1|Ft−) = E[dN(t)|Ft−]

⋆ Precise definition of intensity process by Doob-Meyer

N(t) = Λ(t) +M(t)

⋆ When Λ(t) is absolutely continuous

Λ(t) =

∫ t

0
λ(s)ds

⋆ Variation processes

⟨M⟩(t) = Λ(t) =

∫ t

0
λ(s)ds and [M](t) = N(t)


