Plan for this lecture

- * Brief summary of Kaplan-Meier estimator
 - Kaplan-Meier estimator, $\widehat{S}(t)$
 - + product-integral
 - estimator for variance of $\widehat{S}(t)$
 - large sample properties of $\widehat{S}(t)$
 - estimation of median survival times
- * Confidence interval for S(t)
 - includes solving Problem 3.6 in ABG
- $\star\,$ In a simple linear regression model: How to find a confidence interval for x for a given value of $\mu\,$
 - related to confidence interval for the *p*th fractile from $\widehat{S}(t)$
- ★ Discuss examples in ABG
 - example 3.8 (Figures 3.11 and 3.13)
 - example 3.9 (Figure 3.12)

Situation

- \star We assume:
 - *n* individuals
 - each individual has the same lpha(t) and S(t)
 - may have truncation and/or censoring
 - Y(t): number of individuals at risk just before time t

Situation

- \star We assume:
 - *n* individuals
 - each individual has the same lpha(t) and S(t)
 - may have truncation and/or censoring
 - Y(t): number of individuals at risk just before time t
- $\star\,$ Gives a multiplicative intensity process

 $\lambda(t) = \alpha(t)Y(t)$

Situation

- $\star\,$ We assume:
 - n individuals
 - each individual has the same $\alpha(t)$ and S(t)
 - may have truncation and/or censoring
 - Y(t): number of individuals at risk just before time t
- * Gives a multiplicative intensity process

$$\lambda(t) = \alpha(t)Y(t)$$

Kaplan-Meier estimator

$$\widehat{S}(t) = \prod_{u < t} (1 - d\widehat{A}(u)) = \prod_{j: T_j \leq t} \left(1 - rac{1}{Y(T_j)} \right)$$

Estimator for $Var[\widehat{S}(t)]$

- $\star\,$ Using martingale theory, we found that
 - $\widehat{S}(t)$ is approximately normal

-
$$\operatorname{Var}[\widehat{S}(t)] = S^2(t)\operatorname{Var}[\widehat{A}(t)]$$

Estimator for $Var[\widehat{S}(t)]$

- $\star\,$ Using martingale theory, we found that
 - $\widehat{S}(t)$ is approximately normal - $\operatorname{Var}[\widehat{S}(t)] = S^2(t)\operatorname{Var}[\widehat{A}(t)]$
- * Estimator for $Var[\widehat{S}(t)]$

$$\widehat{ au}^2(t) = \widehat{S}^2(t) \widehat{\sigma}^2(t) = \widehat{S}^2(t) \sum_{j: \mathcal{T}_j \leq t} rac{1}{Y(\mathcal{T}_j)^2}$$

Estimator for $Var[\widehat{S}(t)]$

- $\star\,$ Using martingale theory, we found that
 - $\widehat{S}(t)$ is approximately normal - $\operatorname{Var}[\widehat{S}(t)] = S^2(t)\operatorname{Var}[\widehat{A}(t)]$
- * Estimator for $Var[\widehat{S}(t)]$

$$\widehat{ au}^2(t) = \widehat{S}^2(t) \widehat{\sigma}^2(t) = \widehat{S}^2(t) \sum_{j: T_j \leq t} rac{1}{Y(T_j)^2}$$

* Alternative estimator (Greenwood's formula)

$$\widehat{ au}^2(t) = \widehat{S}^2(t) \sum_{j: \mathcal{T}_j \leq t} rac{1}{Y(\mathcal{T}_j)(Y(\mathcal{T}_j)-1)}$$

Estimating median survival times

* *p*th fractile ξ_p :

$$F(\xi_{p}) = p \Leftrightarrow S(\xi_{p}) = 1 - p$$

Estimating median survival times

$$\star$$
 pth fractile ξ_p :
 $F(\xi_p) = p \Leftrightarrow S(\xi_p) = 1 - p$

 \star Estimator for ξ_p

$$\widehat{\xi}_{p} = \min\{t : \widehat{S}(t) \leq 1 - p\}$$

 \star One can show that

$$\widehat{\mathsf{SD}}[\widehat{\xi}_{\rho}] = \frac{\widehat{\tau}(\widehat{\xi}_{\rho})}{\widehat{f}(\widehat{\xi}_{\rho})}$$

Estimating median survival times

$$\star$$
 pth fractile ξ_p :
 $F(\xi_p) = p \Leftrightarrow S(\xi_p) = 1 - p$

* Estimator for ξ_p

$$\widehat{\xi}_{p} = \min\{t : \widehat{S}(t) \leq 1 - p\}$$

 \star One can show that

$$\widehat{\mathsf{SD}}[\widehat{\xi}_{\rho}] = \frac{\widehat{\tau}(\widehat{\xi}_{\rho})}{\widehat{f}(\widehat{\xi}_{\rho})}$$

* Obtain confidence interval by including in the interval all values ξ_p^0 that rejects $H_0: \xi_p = \xi_p^0$ when tested against $H_1: \xi_p \neq \xi_p^0$