Plan for this lecture - * A few expressions for the relative risk regression - specification of the situation - hazard rate and intensity process - partial likelihood - * Cox regression as profile likelihood ## Relative risk regression - **★** Situation: - n individuals - individual i has covariate vector $x_i(t)$ - individual i has hazard rate and intensity process $$\alpha(t|x_i(t)) = \alpha_0(t)r(\beta, x_i(t))$$ $$\lambda_i(t) = Y_i(t)\alpha_0(t)r(\beta, x_i(t))$$ $- N_i(t), Y_i(t), N_{\bullet}(t), Y_{\bullet}(t), \lambda_{\bullet}(t)$ ## Relative risk regression - * Situation: - n individuals - individual i has covariate vector $x_i(t)$ - individual i has hazard rate and intensity process $$\alpha(t|x_i(t)) = \alpha_0(t)r(\beta, x_i(t))$$ $$\lambda_i(t) = Y_i(t)\alpha_0(t)r(\beta, x_i(t))$$ - $-N_i(t), Y_i(t), N_{\bullet}(t), Y_{\bullet}(t), \lambda_{\bullet}(t)$ - * Partial likelihood $$L(\beta) = \prod_{j} \left[\frac{r(\beta, x_{i_j}(T_j))}{\sum_{\ell=1}^{n} Y_{\ell}(T_j) r(\beta, x_{\ell}(T_j))} \right]$$ ## Relative risk regression - * Situation: - n individuals - individual i has covariate vector $x_i(t)$ - individual i has hazard rate and intensity process $$\alpha(t|x_i(t)) = \alpha_0(t)r(\beta, x_i(t))$$ $$\lambda_i(t) = Y_i(t)\alpha_0(t)r(\beta, x_i(t))$$ - $$N_i(t)$$, $Y_i(t)$, $N_{\bullet}(t)$, $Y_{\bullet}(t)$, $\lambda_{\bullet}(t)$ * Partial likelihood $$L(\beta) = \prod_{j} \left[\frac{r(\beta, x_{i_j}(T_j))}{\sum_{\ell=1}^{n} Y_{\ell}(T_j) r(\beta, x_{\ell}(T_j))} \right]$$ * For Cox regression models: $$r(\beta, x_i(t)) = \exp\{\beta^T x_i(t)\}\$$