Plan for this lecture

- * A few expressions for the relative risk regression
 - specification of the situation
 - hazard rate and intensity process
 - partial likelihood
- * Cox regression as profile likelihood

Relative risk regression

- **★** Situation:
 - n individuals
 - individual i has covariate vector $x_i(t)$
 - individual i has hazard rate and intensity process

$$\alpha(t|x_i(t)) = \alpha_0(t)r(\beta, x_i(t))$$

$$\lambda_i(t) = Y_i(t)\alpha_0(t)r(\beta, x_i(t))$$

 $- N_i(t), Y_i(t), N_{\bullet}(t), Y_{\bullet}(t), \lambda_{\bullet}(t)$

Relative risk regression

- * Situation:
 - n individuals
 - individual i has covariate vector $x_i(t)$
 - individual i has hazard rate and intensity process

$$\alpha(t|x_i(t)) = \alpha_0(t)r(\beta, x_i(t))$$

$$\lambda_i(t) = Y_i(t)\alpha_0(t)r(\beta, x_i(t))$$

- $-N_i(t), Y_i(t), N_{\bullet}(t), Y_{\bullet}(t), \lambda_{\bullet}(t)$
- * Partial likelihood

$$L(\beta) = \prod_{j} \left[\frac{r(\beta, x_{i_j}(T_j))}{\sum_{\ell=1}^{n} Y_{\ell}(T_j) r(\beta, x_{\ell}(T_j))} \right]$$

Relative risk regression

- * Situation:
 - n individuals
 - individual i has covariate vector $x_i(t)$
 - individual i has hazard rate and intensity process

$$\alpha(t|x_i(t)) = \alpha_0(t)r(\beta, x_i(t))$$

$$\lambda_i(t) = Y_i(t)\alpha_0(t)r(\beta, x_i(t))$$

-
$$N_i(t)$$
, $Y_i(t)$, $N_{\bullet}(t)$, $Y_{\bullet}(t)$, $\lambda_{\bullet}(t)$

* Partial likelihood

$$L(\beta) = \prod_{j} \left[\frac{r(\beta, x_{i_j}(T_j))}{\sum_{\ell=1}^{n} Y_{\ell}(T_j) r(\beta, x_{\ell}(T_j))} \right]$$

* For Cox regression models:

$$r(\beta, x_i(t)) = \exp\{\beta^T x_i(t)\}\$$