
TMA4275 Lifetime analysis
Obligatory project 1, Spring 2024

Out: Tuesday January 23rd

In: Wednesday February 7th at (latest) 21.00

Important information: Parts of this project are to be done using R. An introduction to

R can be found in the course web page (see Statistical software). The project report should

consist of one (and only one) pdf-file, and should be uploaded via Blackboard. The project

report should include derivation of formulas that you are using in your implementations. The

project report should also include the R code you have used to solve the project and the plots

you have generated. Associated to the various plots there should be captions explaining the

contents of the plots, and in addition all the plots should be explained and discussed in the main

text of the report.

The project report should be formulated as a scientific report. In particular, it should be possible

to understand what you have done without reading the questions in this problem text. Moreover,

the text in the project report should consists of full sentences and proper punctuation should

by used throughout, also in equations! All results you present should be discussed. What can

you (and the world) learn from your results? The project text should be written so that it is

easy to follow by your fellow students in TMA4275 Lifetime analysis.

The report can be written in English or Norwegian. The project can be done alone or in groups

of two or three persons. If you do the project in a group, only one of the individuals in the

group should hand in the solution. In your solution, specify your (full) names, NOT student or

candidate numbers.

Your solution should be handed in in Blackboard. After having logged in to Blackboard click

on “course information” to find where to hand in your solution.

Problem 1: Discrete time martingales
Let {Xn}∞n=0 be a (first-order) homogeneous Markov chain, where for each n = 0, 1, 2 . . . we

have Xn ∈ {−1, 0, 1}. We denote the initial distribution of the Xn chain by

P (X0 = k) = αk for k = −1, 0, 1,

and the transition probabilities we denote by

P (Xn = k|Xn−1 = j) = βjk for j, k = −1, 0, 1.

Then let {Zn}∞n=0 be defined from the Xn chain by the relation

Zn =
n∑

s=0

Xs.

Let Fn be the history containing information about the values of {Xs}ns=0 and {Zs}ns=0.
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Table 1: Values for {βjk; j, k = −1, 0, 1} which makes Zn a zero-mean martingale.

j\k -1 0 1

-1 0.48 0.04 0.48

0 0.01 0.98 0.01

1 0.49 0.02 0.49

a) Identify what restrictions you need to put on {αk; k = −1, 0, 1} and {βjk; j, k = −1, 0, 1}
for {Zn}∞n=0 to be a zero-mean martingale with respect to Fn. In particular use this to

observe that Zn is a zero-mean martingale when α−1 = α1 = 0, α0 = 1 and the βjk’s are

as given Table 1.

In the following we restrict the values of {αk; k = −1, 0, 1} and {βjk; j, k = −1, 0, 1} to be so

that Zn is a zero-mean martingale.

b) Find the predictable variation process ⟨Z⟩n, and the optional variation process [Z]n of the

zero-mean martingale Zn.

c) Write an R function that simulates the Zn process up to some specified time N , and

outputs the simulated Zn process and the corresponding predictable and optional variation

processes. Input arguments to the function should beN and the values of {αk; k = −1, 0, 1}
and {βjk; j, k = −1, 0, 1}.

For the values of {αk; k = −1, 0, 1} and {βjk; j, k = −1, 0, 1} given in the end of Problem

1a), use the function to simulate one realisation of the Zn process up to time N = 50.

Make plots of the simulated Zn and the two corresponding variation processes.

d) Use the R function you implemented in c) to simulate a large number of realisations of Zn

up to time N = 100. Make plots of some of the generated Zn processes and corresponding

variation processes. Include in the plots sufficient many realisations so that it is possible

to get an impression of the variability of the processes, but not so many that everything

becomes black.

For each n = 0, 1, . . . , N , estimate the variance of Zn by forming the empirical mean

of all the simulated predictable variation processes, and include the result in the plot

containing the simulated predictable variation processes. Estimate also the variance of Zn

by forming the empirical mean of all the simulated optional variation processes and include

the result in the plot containing the simulated optional variation processes. Finally, use

the simulated Zn processes to estimate the variance of Zn for each n = 0, 1, . . . , N and

make a plot containing all the three estimated variances.

[Remark: It is here also possible to compute the exact variance of Zn. The simplest way

to do this is perhaps to compute analytically the expected value of the optional variation

process.]
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Using the Xn process defined above, define a process {Un}∞n=0 by

Un =

n∑
s=0

Xs

n− s+ 1
.

e) Find the Doob decomposition of {Un}∞n=0, i.e. find expressions for the predictable process

E[Un|Fn−1] and a zero-mean martingale {Mn}∞n=0 so that

Un = E[Un|Fn−1] + ∆Mn

for n = 0, 1, . . ., where ∆Mn = Mn −Mn−1.

Problem 2: Continuous time martingales

Assume we have n ≥ 2 components of a particular type, which we number from 1 to n. We are

interested in failures for the components, and assume the different components fail independently

of eachother. Component number 1 is different from the remaining components. We assume

component number 1 has failures according to a non-homogenuous Poisson process with a (fixed)

intensity function α(t) for t ≥ 0. Letting N1(t) denote the number of failures of component

number 1 from time zero til time t (including time t) we thereby have

P (dN1(t) = 1|N(s); s ∈ [0, t)) = α(t)dt,

where dN1(t) = N((t+dt)−)−N(t−). Whenever component number 1 has a failure we assume

it is immediately repaired, so in particular one failure does not influence the intensity of new

failures.

The remaining components, components number 2 to n, are all probabilitistically equal, so in the

following we describe the assumed model for component number i ∈ {2, 3, . . . , n}. Component

number i is operational at time t = 0. Whenever the component is operational it fails with the

same intensity as component number 1, namely α(t). When the component has failed it takes

some time before it is repaired, and in this period it can not fail again. The time it takes to

repair a failed component we assume to be exponentially distributed with mean value 1/ν. When

the component is repaired it can again fail, and do so according to the same intensity function

α(t). We let Yi(t) be an indicator function specifying whether or not component number i is

operational just before time t, i.e.

Yi(t) =

{
1 if component i is operational just before time t,

0 otherwise.

Letting Ni(t) denote the number of failures for component number i from time zero to time t

(included time t) we thereby have

P (dNi(t) = 1|Ni(s), Yi(s); s ∈ [0, t)) = Yi(t)α(t)dt,
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where dNi(t) = Ni((t+ dt)−)−Ni(t−). The counting process of focus in this problem is then

N(t) =
n∑

i=1

Ni(t),

the total number of failures from time zero to time t (included time t). In your solution of the

questions below you may also use the notation Y (t) for the number of components at risk for

failure just before time t, i.e.

Y (t) = 1 +
n∑

i=2

Yi(t).

Moreover we define A(t) =
∫ t
0 α(s)ds and let Ft be the history that contains information about

all Ni(t), Yi(t), i = 1, 2 . . . , n from time zero to time t (including time t).

a) Starting from the general formulation of the Doob-Meyer decomposition, find the Doob-

Meyer decomposition of N(t). In particular, starting from

dN⋆(t) = E[dN(t)|Ft−]

show that the compensator of N(t) is

N⋆(t) =

∫ t

0
α(t)Y (t)dt.

b) Write up the Doob-Meyer decomposition on incremental form. Divide by Y (t) on both

sides of this equation and thereafter integrate from time 0 to time t to get the expression∫ t

0

dN(s)

Y (s)
= A(t) +

∫ t

0

dM(s)

Y (s)
.

Explain why the second term on the right hand side of this expression is a zero-mean

martingale, and explain why this in turn implies that the integral on the left hand side,

Â(t) =

∫ t

0

dN(s)

Y (s)
,

is an unbiased estimator of A(t).

One should note that since N(t) is a counting process, dN(t) equals unity at times t where a

failure occurs, and is otherwise equal to zero. The integral for Â(t) can therefore be written as

a sum. Letting T1, T2, . . . denote the (ordered) failure times, we have

Â(t) =
∑

j:Tj<t

1

Y (Tj)
.

4



c) Since N(t) is a counting process we know that the optional variation process of the associ-

ated zero-mean martingale M(t) is [M ](t) = N(t). Use this to find the optional variation

process of

I(t) =
∫ t

0

dM(s)

Y (s)
.

Thereafter use the expression you found for the optional variation process of I(s), [I](t),
to show that an unbiased estimator of σ2(t) = Var[Â(t)] is

σ̂2(t) =
∑

j:Tj<t

1

Y (Tj)2
.

{Hint: Remember that Var[I(t)] = E[[I](t)]}

In the last item of the project you should for specific choices of α(t), ν, n and τ simulate the

failure processes defined above for t ∈ [0, τ ]. For this you may use

α(t) =

{
t

600 for t ≤ 60,
1
10 otherwise,

ν = 0.2, n = 25 and τ = 100, or something else of your choice. If you make other choices you

should of course specify what values your are using.

d) Implement R code to simulate the failure processes defined above. Thereafter consider

the simulated processes as observed and use them to compute the corresponding estimates

Â(t) and σ̂2(t). Make a plot of Â(t) and, assuming Â(t) to be approximately Gaussian

distributed, a 90%-confidence interval for A(t) for each t ∈ [0, τ ]. Include in the plot also

the true A(t) you used when you simulated the data.
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