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Problem 1

a) The survival function of T becomes

R(t) = e−Z(t) = e− ln(t+1) =
1

t+ 1
,

the pdf

f(t) = − d

dt
R(t) =

1

(t+ 1)2
,

and the hazard

z(t) =
d

dt
Z(t) =

1

t+ 1
.

At the median q1/2, R(q1/2) = 1
2 such that 1

1+q1/2
= 1

2 and q1/2 = 1.

b) The expected survival time becomes

ET =

∫ ∞
0

R(t)dt =

∫ ∞
0

1

t+ 1
dt = ln(t+ 1)

∣∣∣∞
0

=∞,

that is, it is not finite, and

E ln(T + 1) = EZ(T ) = 1,

since Z(T ) ∼ exp(1).

Problem 2

a) The Kaplan-Meier estimator is given by

R̂(t) =
∏
j:tj≤t

(
1− dj

nj

)

where tj , j = 1, . . . , 5 are the ordered distinct failure times, nj the number at risk prior
to those failure times and dj the number failing.

j tj nj dj 1− dj
nj

R̂(t), tj ≤ t < tj+1

1 1 8 1 7/8 7/8
2 2 7 1 6/7 3/4
3 5 6 1 5/6 5/8
4 12 4 1 3/4 15/32
5 30 2 1 1/2 15/64
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An estimate of mean survival time, ÊT =
∫∞
0 R̂(t)dt but beyond the last right censoring

point y8 = 31, R(t) is not identifiable. If assuming that R(t) = 0 for t > 31, however, we
obtain

ÊT = 1 +
7

8
+ 3 · 3

4
+ 7

5

8
+ 18 · 15

32
+ 1 · 15

64
=

1099

64
= 17.17.

At the median survival time q1/2, R(q1/2) = 1/2. Based on our estimate of R, an estimate
of the median is thus q̂1/2 = 12.

b) The survival function of the standard logistic distribution becomes

R(t) = 1− F (t) = 1− 1

1 + e−t
,

and the density

f(t) =
d

dt
F (t) =

e−t

(1 + e−t)2
=

1

(1 + e−t)(1 + et)
.

c) A log-location-scale model is constructed from the standard logistic distribution by as-
suming that

lnT = µ+ σU

where U is standard logistic with survival function R. The survival function of T is then

RT (t) = P (T > t)

= P (µ+ σU > ln t)

= P (U >
ln t− µ
σ

)

= R(
ln t− µ
σ

)

= 1− 1

1 + e−
ln t−µ
σ

.
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Similarly,

FT (t) = F (
ln t− µ
σ

)

such that the pdf of T ,

fT (t) =
d

dt
FT (t)

=
d

dt
F (

ln t− µ
σ

)

= f(
ln t− µ
σ

)
1

σt

=
1

σt(1 + e−
ln t−µ
σ )(e

ln t−µ
σ )

.

For right censored observations the likelihood is then

L(µ, σ) =
∏
i:δi=1

fT (yi)
∏
i:δi=0

RT (yi) =
∏
i:δi=1

1

σt(1 + e−
ln yI−µ

σ )(e
ln yi−µ

σ )

∏
i:δi=0

1− 1

1 + e−
ln yi−µ

σ

d) The quantile qα, α = 0.05, satisfies

P (T > qα) = α

that is,

RT (qα) = α

R(
ln qα − µ

σ
) = α

1− 1

1 + e−
ln qα−µ

σ

= α

1

1 + e−
ln qα−µ

σ

= 1− α

ln qα − µ
σ

= logit(1− α)

qα = eµ+σ logit(1−α)

Thus, an estimate of qα is given by

q̂α = e2.59+1.01 ln(0.95/.05) = 262.58.

The estimator ̂ln qα = µ̂+ el̂nσ logit(1− α) = 5.57

is perhaps better approximated by a normal distribution than q̂α (which is restricted to
positive values). To find its approximate variance we need

∂ ln qα
∂µ

= 1,

∂ ln qα
∂ lnσ

= elnσ logit(1− α) = 1.01 ln(0.95/.05) = 2.97.
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Based on the delta method, using the output from vcov(model), we then find that

Var( ̂ln qα) ≈ (1)20.4424 + (2.97)20.1361 + 2 · 1 · 2.97 · 0.03916 = 1.88.

An approximate 95% confidence interval for ln qα is then 5.57± 1.96
√

1.88 = (2.88, 8.25)
and a corresponding interval for qα is (e2.88, e8.25) = (17.86, 3856.11), admittedly a very
wide interval reflecting the small amount of data we have.

e) The total time on test at the time of each observed failure becomes as follows.

i yi δi ni T (yi) j Yj Yj/Y5
1 1 1 8 0 + 8 · 1 = 8 1 8 0.07
2 2 1 7 8 + 7 · 1 = 15 2 15 0.14
3 5 1 6 15 + 6 · 3 = 33 3 33 0.30
4 10 0 5 33 + 5 · 5 = 58
5 12 1 4 58 + 4 · 2 = 66 4 66 0.60
6 20 0 3 66 + 3 · 8 = 90
7 30 1 2 90 + 2 · 10 = 110 5 110
8 31 0 1 110 + 1 · 1 = 111

which gives the following TTT-plot.
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The convex shape indicates a decreasing failure rate.

The test statistic of the Barlow-Prochan test becomes

Z =

∑4
i=1 Yj/Y5 − 4/2√

4/12
=

1.13− 2

.57
= −1.54,

which is not smaller than the lower critical value −z0.025 = −1.96. We can thus not reject
the null hypothesis that the data comes from an exponential distribution.
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Problem 3

a) The model assumes that the hazard function for each the lifetime Ti of component i =
1, 2, . . . , n is given by

z(t;xi) = z0(t)e
βxi

where xi is the covariate value (mean-centered temperature) for component i.

The regression coefficient β is estimated by maximising the partial likelihood

L(β) =
r∏
j=1

eβxij∑
i∈Rj e

βxi

where ij is the component that failed at the j’th failure and Rj is the set of individual
at risk prior to the j’th failure.

b) From Fig. 2, the baseline survival after 100 days is estimated to R̂0(100) = 0.78. The
estimated survival at t = 100 days for a component with xi = 20 is then

R̂(t;xi = 20) = R0(t)
eβxi = 0.78e

0.10·20
= 0.787.87 = 0.1415. (1)

This agrees well with the observed data in Fig. 1—for units operating around 70 degrees
(x = 20), most failures (roughly about 85%) occur before 100 days.

c) If the proportional hazard assumption holds, the Schoenfeld residuals have expected
values of zero. Based on the confidence bands of loess estimated mean there is some
indication that proportional effect of x (temperature) on the hazard is not constant across
time but instead slightly decreasing for components that become very old (for log t > 5.3,
that is, t > 200 days).


