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Note: Some of the exam problems were given in slightly different variants. This
solution sketch gives only the solutions to the version A of each of the problems.
The solutions of the other problem variants are similar to what is given here.

Problem 1

The density function is given from the survival function by

f(t) = −S ′(t) = − d

dt

[
1 + θ + 2θt

1 + θ
e−2θt

]

= − 1
1 + θ

[
2θe−2θt + (1 + θ + 2θt)e−2θt · (−2θ)

]
= − e

−2θt

1 + θ

[
2θ − 2θ − 2θ2 − 4θ2t

]
= e−2θt

1 + θ

(
2θ2 + 4θ2t

)
= 2θ2(1 + 2t)

1 + θ
e−2θt

So we have
f(t) = 2θ2(1 + 2t)

1 + θ
e−2θt for t ≥ 0.

The hazard rate is given by

α(t) = f(t)
S(t) =

2θ2(1+2t)
1+θ e−2θt

1+θ+2θt
1+θ e−2θt

= 2θ2(1 + 2t)
1 + θ + 2θt.

So we have
α(t) = 2θ2(1 + 2t)

1 + θ + 2θt for t ≥ 0.

Problem 2

• P (dN(t) > 1) = 0 is correct because a counting process is defined only to
have jumps of size 1.
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• The statement “N(t) is Poisson distributed with mean value Λ(t) =
∫ t

0 λ(s)ds”
is incorrect because N(t) does not need to be Poisson distributed. If N(t)
counts the number of events in a Poisson process the statement would be
true, but the statement is not generally correct.

• N(t) is a sub-martingale. Since the N(t) is an increasing function one must
also have that E[N(t)|Fs] ≥ N(s).

• 2N(t) + 5 is not a counting process because a counting process is required
to start at zero at time zero.

• For 0 < t1 < t2 < t3 the increments N(t2)−N(t1) and N(t3)−N(t2) do not
need to be independent. If N(t) counts the number of events in a Poisson
process it would be true, but the statement is not generally true for counting
processes.

• It is not correct that λ(t) ∈ [0, 1]. The λ(t) can not be negative, but it may
be larger than one.

Problem 3

The Kaplan-Meyer estimates and corresponding confidence intervals may be found
and plotted by the following R commands:

library(survival)
TPlacebo = c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23)
CensPlacebo = 1 - c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

T6MP = c(6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,25,32,32,34,35)
Cens6MP = 1 - c(0,0,0,1,0,1,0,1,1,0,0,1,1,1,0,0,1,1,1,1,1)

KMPlacebo = survfit(Surv(TPlacebo,CensPlacebo)∼1,conf.type="log-log")
pdf(”KMPlacebo.pdf”)
plot(KMPlacebo,col=”red”)
graphics.off()

KM6MP = survfit(Surv(T6MP,Cens6MP)∼1,conf.type="log-log")
pdf(”KM6MP.pdf”)
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Figure 1: Kaplan-Meyer estimates with confidence intervals for the placebo (left) and
the 6MP (right) groups.

plot(KM6MP,col="blue",new=FALSE)
graphics.off()

The resulting plots are shown in Figure 1. Confidence intervals for the median
survival times can be found by drawing a horisontal line at survival probability
equal to 0.5 and reading off at which times t this line crosses the confidence interval
curves. The process is illustrated by green lines in the two plots in Figure 1 (code
for producing these green lines for the placebo and 6Mp groups are

lines(c(0,25),c(0.5,0.5),col="green")
lines(c(4,4),c(0,0.5),col="green")
lines(c(11,11),c(0,0.5),col="green")

and

lines(c(0,35),c(0.5,0.5),col="green")
lines(c(13,13),c(0,0.5),col="green")

respectively). Note that for the 6MP group the upper limit in the confidence
interval is equal to infinity. The numerical values for the confidence intervals can
either be read off from the plots or they can be found by inspecting the R variables
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KMPlacebo and KM6MP produced in the R code above, which can be done by
the R commands

KMPlacenbo
KM6MP

The confidence interval for the Placebo group becomes [4, 11] and for the 6MP
group it becomes [13,∞).

Problem 4

The estimated relative risk function is

r(t, x) = exp {−0.51 · sex + 0.015 · age− 0.0022 · wt.loss− 0.013 · ph.karno}

From the R output we see that the two covariates sex and ph.karno are significant
at the 5% level since these two have values Pr(> |z|) that are smaller than 0.05.

We are asked to find a 95% confidence interval for the ratio

αmale(t|x)
αfemale(t|x) = α0(t) exp {β1 · 1 + β2 · x2 + β3x3 + β4x4}

α0(t) exp {β1 · 2 + β2 · x2 + β3x3 + β4x4}
= exp{−β1}.

From the R output we find that a 95% confidence interval for β1 is

(−0.513955−z0.025·0.174410,−0.513955+z0.025·0.174410) = (−0.8557986,−0.1721114),

where we used that z0.025 = 1.96. The 95% confidence interval for e−β1 then
becomes

(exp{−(−0.1721114)}, exp{−(−0.857986)}) = (1.1878, 2.3527)

To see what covariates that have the largest effect on the survival probability we
need to take into account over which interval the various covariates are varying.
These intervals are given in the beginning of the problem text and we get:

• sex: | − 0.513955 · (2− 1))| = 0.513955

• age: |0.015140 · (82− 39)| = 0.65102

• wt.loss: | − 0.002246 · (68− (−24))| = 0.206632



TMA4275 Lifetime Analysis, June 2nd 2021 Page 5 of 10

• ph.karno: | − 0.012871 · (100− 50)| = 0.64355

So we see that in the estimated model age is the covariate that has the largest effect
on the hazard rate, and thereby also the largest effect on the survival probability.

What to do next in the analysis of the data set? Since two of the covariates are
not significant is would be reasonable to start trying a model with either age or
wt.loss removed, or both age and wt.loss removed. Thereafter is would be natural
to check how well the estimated model fit the data by looking at for example
the martingale residuals and by comparing the fitted model with the results for
a stratified model, where for example the two sexes are allowed to have different
baseline hazard rates.

Problem 5

• 8Mn is a mean zero martingale. It is easy to show that multiplying with a
constant preserves the martingale property, and clearly also 8M0 = 0 since
M0 = 0.

• 2Mn + 4 is not a mean zero martingale since 2M0 + 4 = 4 6= 0. So even if
the martingale property is preserved for 2Mn + 4 it is not starting at zero.

• M2
n + Mn is not (necessarily) a martingale. The easiest way to show this is

to select a particular zero mean martingale and show that for that process
the martingale property does not hold for M2

n +Mn.

• (H •M)n is a mean zero martingale. This is in fact an important result in
our textbook.

• (H2•M)n is a mean zero martingale because whenHn is a predictable process
also H2

n becomes a predictable process, and thereby the previous result gives
that also (H2 •M)n is a zero mean martingale.

• ∑n
s=1(2s+ 1)Hs(Ms−Ms−1) is also a zero mean martingale. This is because

when Hn is a predictable process, then also H̃n = (2n+1)Hn is a predictable
process, and as we then have that

n∑
s=1

(2s+ 1)Hs(Ms −Ms−1) = (H̃ •M)n

the result follows.
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Problem 6

To show that X(t) is a sub-martingale with respect to {Ft} we need to show that
for any 0 ≤ s < t we have

E[X(t)|Fs] ≥ X(s).
Inserting how X(t) is defined in E[X(t)|Fs] we get

E[X(t)|Fs] = E
N(t)∑
i=1

Zi

∣∣∣∣∣∣Fs


= E
N(s)∑
i=1

Zi +
N(t)∑

i=N(s)+1

∣∣∣∣∣∣Fs


=
N(s)∑
i=1

Zi + E
 N(t)∑
i=N(s)+1

Zi

∣∣∣∣∣∣Fs


= X(s) + E
 N(t)∑
i=N(s)+1

Zi

∣∣∣∣∣∣Fs


Now focusing on the last term in this extression and using the law of double
expectation by conditioning on N(t) we get

E
 N(t)∑
i=N(s)+1

Zi

∣∣∣∣∣∣Fs
 = E

E
 N(t)∑
i=N(s)+1

Zi

∣∣∣∣∣∣Fs, N(t)
∣∣∣∣∣∣Fs


= E

 N(t)∑
i=N(s)+1

E[Zi| Fs, N(t)]
∣∣∣∣∣∣Fs


= E

 N(t)∑
i=N(s)+1

µ

∣∣∣∣∣∣Fs


= E[µ(N(t)−N(s))| Fs]
= µE[N(t)−N(s)| Fs] .

In the problem text it is given that µ > 0, and since N(t) is a counting process we
have that N(t)−N(s) ≥ 0 and thereby also E[N(t)−N(s)|Fs] ≥ 0. Thereby we
have that

E
 N(t)∑
i=N(s)+1

Zi

∣∣∣∣∣∣Fs
 ≥ 0,

and thereby also
E[X(t)|Fs] ≥ X(s)
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as we should show.

To find the compensator X?(t) we can use that

dX?(t) = E[dX(t)|Ft−]

and that the expression we have for X(t) gives that

dX(t) = X(t)−X(t−) = I(dN(t) = 1)ZN(t).

Combining these two expressions we get

dX?(t) = E[I(dN(t) = 1)ZN(t)|Ft−].

Using the law of double expectation, conditioning on the value of dN(t), we get

dX?(t) = E[I(dN(t) = 1)ZN(t)|Ft−, dN(t) = 0] · P (dN(t) = 0|Ft−)
+ E[I(dN(t) = 1)ZN(t)|Ft−, dN(t) = 1] · P (dN(t) = 1|Ft−)

= E[0 · ZN(t)|Ft−, dN(t) = 0] · P (dN(t) = 0|Ft−)
+ E[1 · ZN(t)|Ft−, dN(t) = 1] · P (dN(t) = 1|Ft−)

= 0 + E[ZN(t)] · λ(t)dt = µλ(t)dt,

where we in the last line used that when it is given that there is a new event at
time t, the value of ZN(t) is independent of everything that has happened before
time t, and that the intensity process λ(t) can be expressed as

λ(t)dt = P (dN(t) = 1|Ft−) = E[dN(t) = 1|Ft−].

Thereby we have that the compensator becomes

X?(t) =
∫ t

0
dX?(s)ds = µ

∫ t

0
λ(s)ds = µΛ(t).

The martingale M(t) in the Doob-Meyer decomposition then becomes

M(t) = X(t)−X?(t) =
N(t)∑
i=1

Zi − µΛ(t).
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Problem 7

a)

The intensity process for individual number i becomes

λi(t; θ) = Yi(t)αi(t) = I(T̃i ≥ t)αi(t) = I(T̃i ≥ t)ν exp{β1xi1 + β2xi2}.

Thereby the aggregated intensity process becomes

λ•(t; θ) =
n∑
i=1

λi(t; θ)

=
n∑
i=1

I(T̃i ≥ t)ν exp{β1xi1 + β2xi2}.

= ν
n∑
i=1

I(T̃i ≥ t) exp{β1xi1 + β2xi2}.

Using that we necessarily must have I(T̃i ≥ t) = 1 whenever ∆Ni(t) = 1 we
thereby get from the general formula for the likelihood function of a counting
process that

L(θ) =
n∏
i=1

(ν exp{β1xi1 + β2xi2})Di exp
{
−
∫ τ

0
ν

n∑
i=1

I(T̃i ≥ t) exp{β1xi1 + β2xi2}dt
}

= νD• exp
{

n∑
i=1

Di(β1xi1 + β2xi2)
}

exp
{
−ν

n∑
i=1

exp{β1xi1 + β2xi2}
∫ τ

0
I(T̃i ≥ t)dt

}

= νD• exp
{
β1

n∑
i=1

Dixi1 + β2

n∑
i=1

Dixi2

}
exp

{
−ν

n∑
i=1

eβ1xi1+β2xi2T̃i

}

= νD• exp
β1

∑
i:xi1=1

Di + β2

n∑
i=1

Dixi2 − ν

 ∑
i:xi1=0

eβ2xi2T̃i +
∑

i:xi1=1
eβ1+β2xi2T̃i


= νD• exp

β1D
(1)
• + β2

n∑
i=1

Dixi2 − ν

 ∑
i:xi1=0

eβ2xi2T̃i + eβ1
∑

i:xi1=1
eβ2xi2T̃i

 ,
where we in the second last row used that Xi1 ∈ {0, 1}. The log likelihood function
thereby becomes

`(θ) = D• ln ν + β1D
(1)
• + β2

n∑
i=1

Dixi2 − ν

 ∑
i:xi1=0

eβ2xi2T̃i + eβ1
∑

i:xi1=1
eβ2xi2T̃i


which is what we should show.
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b) The partial derivatives of `(θ) with respect to ν and β1, repectively, become

∂`

∂ν
= D• ·

1
ν
−

 ∑
i:xi1=0

eβ2xi2T̃i + eβ1
∑

i:xi1=1
eβ2xi2T̃i

 ,
∂`

∂β1
= D(1)

• − νeβ1
∑

i:xi1=1
eβ2xi2 .

Defining the notations

S(0)(β2) =
∑

i:xi1=0
eβ2xi2T̃i,

S(1)(β2) =
∑

i:xi1=1
eβ2xi2T̃i,

and solving ∂`
∂ν

= 0 with respect to ν we get

ν = D•
S(0)(β2) + eβ1S(1)(β2) .

Then setting ∂`
∂β1

= 0 and inserting the expression we just found for ν we get

D(1)
• = D•e

β1S(1)(β2)
S(0)(β2) + eβ1S(1)(β2)

D(1)
• S(0)(β2) + eβ1D(1)

• S(1)(β2) = eβ1D•S
(1)(β2)

eβ1 = D(1)
• S(0)(β2)

D•S(1)(β2)−D(1)
• S(1)(β2)

β1 = ln
[

D(1)
• S(0)(β2)

D•S(1)(β2)−D(1)
• S(1)(β2)

]
.

We have thereby explicit expressions for the MLEs for ν and β1 as a function of
the MLE for β2,

β̂1 = ln
[

D(1)
• S(0)(β̂2)

D•S(1)(β̂2)−D(1)
• S(1)(β̂2)

]

ν̂ = D•

S(0)(β̂2) + eβ̂1S(1)(β̂2)
,

and we get the profile likelihood for β2 by inserting the expressions we have found
for ν and β1 as a function of β2 in the formula we have for `(θ).

c)
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We know that we approximately have that θ̂ ∼ N(0, I(θ̂)). Under H0 we thereby
get that β̂1 is approximately normal with zero mean and variance equal to

− ∂2`

β2
1

∣∣∣∣∣
θ=θ̂

= ν̂eβ̂1S(1)(β̂2).

As a test statistic we can thereby use

Z = β̂1√
ν̂eβ̂1S(1)(β̂2)

which is approximately standard normal when H0 is true. We therefore should
reject H0 at signifiance level α if |Z| > zα

2
.


