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Problem 1

The Nelson-Aalen estimator is

Â(t) =
∑
j:Tj≤t

1
Y (Tj)

(1)

The evaluation of the estimator is shown in Table 1.

Table 1: Evaluation of the Nelson-Aalen estimator.

Time Y (t) 1
Y (t) Â(t)

1.11 10 0.1 0.1
1.35 8 0.125 0.1+0.125=0.225
2.16 5 0.2 0.225+0.2=0.425
2.22 4 0.25 0.425+0.25=0.675
2.40 2 0.5 0.675+0.5 = 1.175

The estimator for the variance of the Nelson-Aalen estimator is

σ̂2(t) =
∑
j:Tj≤t

1
Y (Tj)2 (2)

and the approximate 95% confidence interval based on the log transformation at
time t is Â(t) exp

−z0.025

√
σ̂2(t)
Â(t)

 , Â(t) exp

z0.025

√
σ̂2(t)
Â(t)




where z0.025 = 1.96.

Possible R code for solving the remaining part of the problem and the associated
R output are given in the following.
> Y = c ( 10 , 8 , 5 , 4 , 2 )
> Ahat = c ( 0 . 1 , 0 . 2 2 5 , 0 . 4 2 5 , 0 . 6 7 5 , 1 . 1 7 5 )
>
> Sigma2hat = cumsum(1/ (Y^2))
> Sigma2hat
[ 1 ] 0 .010000 0.025625 0.065625 0.128125 0.378125
>
> LowerLimit = Ahat ∗ exp(−1.96∗sqrt ( Sigma2hat )/Ahat )
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> UpperLimit = Ahat ∗ exp(+1.96∗sqrt ( Sigma2hat )/Ahat )
> LowerLimit
[ 1 ] 0 .01408584 0.05579266 0.13040905 0.23873280 0.42127537
> UpperLimit
[ 1 ] 0 .7099327 0.9073775 1.3850650 1.9085144 3.2772507
>
> x = c ( 0 , 1 . 1 1 , 1 . 1 1 , 1 . 3 5 , 1 . 3 5 , 2 . 1 6 , 2 . 1 6 , 2 . 2 2 , 2 . 2 2 , 2 . 4 0 , 2 . 4 0 , 3 . 0 )
> A = Ahat
> yA = c (0 , 0 ,A[ 1 ] ,A[ 1 ] ,A[ 2 ] ,A[ 2 ] ,A[ 3 ] ,A[ 3 ] ,A[ 4 ] ,A[ 4 ] ,A[ 5 ] ,A[ 5 ] )
> L = LowerLimit
> yLower = c (0 , 0 ,L [ 1 ] , L [ 1 ] , L [ 2 ] , L [ 2 ] , L [ 3 ] , L [ 3 ] , L [ 4 ] , L [ 4 ] , L [ 5 ] , L [ 5 ] )
> U = UpperLimit
> yUpper = c (0 , 0 ,U[ 1 ] ,U[ 1 ] ,U[ 2 ] ,U[ 2 ] ,U[ 3 ] ,U[ 3 ] ,U[ 4 ] ,U[ 4 ] ,U[ 5 ] ,U[ 5 ] )
>
> pdf ( "NA. pdf " )
> plot (x , yA, ylim=c (0 ,max( UpperLimit )∗ 1 . 0 5 ) , cex . axis=1.5 , type=" l " ,

x lab=" t " , y lab="A( t ) " )
> l ines (x , yLower , col=" red " )
> l ines (x , yUpper , col=" red " )
> graphics . of f ( )

The resulting plot is shown in Figure 1.

Problem 2

We start by finding the integrated hazard rate,

A(t) =
∫ t

0
α(u)du =

∫ t

0
λeβudu

=
[
λ

β
eβu

]t
0

= λ

β
eβt − λ

β
e0

= λ

β

(
eβt − 1

)
.

We can then find the survival function S(t),

S(t) = e−A(t) = exp
{
−λ
β

(
eβt − 1

)}
.
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Figure 1: Estimated integrated hazard rate and associated 95% confidence interval for
t ∈ [0, 3].

The density function is then given by differentiation. Using the chain rule we get

f(t) = −S ′(t) = − exp
{
−λ
β

(
eβt − 1

)}
·
(
−λ
β
· βeβt

)

= λ exp
{
βt− λ

β

(
eβt − 1

)}
.

Problem 3

The estimated relative risk function is

r(x, β̂) = exp {0.066748 · age + 0.236694 · I(sex=male)− 0.084901 ·mspike}.

The ratio of the hazard rate for a female of age 50 years over the hazard rate of a
female of age 51 years, when the mspike value is the same, becomes

eβage·50+βsex·0+βmspike·mspike

eβage·51+βsex·0+βmspike·mspike = e−βage .
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From the R output we find a 95% confidence interval for βage to be

[0.066748− 1.96 · 0.007051, 0.066748 + 1.96 · 0.007051] = [0.05292804, 0.08056796].

Since e−βage is strictly decreasing as a function of βage the corresponding 95% con-
fidence interval for e−βage becomes[

e−0.08056796, e−0.05292804
]

= [0.9225922, 0.9484483].

The relative risk function it is asked for is

r = exp
{
βage · 35 + βsex · 1 + βmspike · 1.5

}
.

The estimate for r is

r̂ = exp
{
β̂age · 35 + β̂sex · 1 + β̂mspike · 1.5

}
= exp {0.066748 · 35 + 0.236694 · 1− 0.084901 · 1.5}
= exp{2.445523}.

Using that the vector of estimators, β̂, are approximately multivariate normal with
a covariance matrix as given in the R output we get that ln(r̂) is also approximately
normal with mean equal to ln(r) and variance

Var[ln(r̂)] =

 35
1

1.5


T

·

 4.972337e− 05 −7.378061e− 05 4.857322e− 05
−7.378061e− 05 1.871872e− 02 1.957005e− 04
4.857322e− 05 1.957005e− 04 2.922280e− 02

 ·
 35

1
1.5


= 0.1459038.

A 95% confidence interval for ln(r) is thereby

[ln(r̂)− 1.96
√

0.1459038, ln(r̂)− 1.96
√

0.1459038]
= [2.445523− 1.96

√
0.1459038, 2.445523 + 1.96

√
0.1459038

= [1.696855, 3.194191].

A 95% confidence interval for r = eln(r) is then

[exp{1.696855}, exp{3.194191}] = [5.456759, 24.39043].
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Problem 4

To find an expression for the partial likelihood we start with the general expression
for partial likelihood for a relative risk regression model, given in (4.7) in ABG,

L(β) =
∏
Tj

r(β, xij (Tj))∑
`∈Rj

r(β, x`(Tj))
.

Since our covariates are time invariant we can simplify this expression by inserting
xij (Tj) = xij and x`(Tj) = x`. Since we have only one covariate we have that β is
scalar, so r(β, x) = eβx we then get

L(β) =
∏
Tj

eβxij∑
`∈Rj

eβx`
.

Since all the units are at risk at all times we get that Rj = {1, 2, . . . , n} so

L(β) =
∏
Tj

eβxij∑n
`=1 e

βx`
.

To simplify the denominator in this expression we can define

B1 = {i : xi = 1}

to be the set of units that have the covariate equal to one, and correspondingly
define

B0 = {i : xi = 0} = {1, 2, . . . , n} \ B1

to be the set of units that have the covariate equal to zero. Moreover, let z1 = |B1|
be the number of units that has the covariate equal to one, and let z0 = |B0| =
n − z1. Since the covariate value is binary, the denominator can then be written
as

n∑
`=1

eβx` =
∑
`:x`=0

eβ·0 +
∑
`:x`=1

eβ·1 =
∑
`:x`=0

1 +
∑
`:x`=1

eβ = z0 + z1e
β.

The partial likelihood function can thereby be expressed as

L(β) =
∏
Tj

eβxij

z0 + z1eβ
.

Taking the logarithm of this expression we get the log-partial likelihood function,

`(β) =
∑
Tj

(
βxij − ln(z0 + z1e

β)
)
.
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Letting K0 and K1 denote the number of failures observed up to time τ on units
with covariate value equal to zero and one, respectively, and letting K = K0 +K1
denote the total number of failures observed up to time τ , the expression for `(β)
can be written as

`(β) =
∑
Tj

βxij −
∑
Tj

ln(z0 + z1e
β)

=
∑

Tj :xij
=0
β · 0 +

∑
Tj :xij

=1
β · 1−K ln(z0 + z1e

β)

= K0 · 0 +K1 · β −K ln(z0 + z1e
β)

= βK1 −K ln(z0 + z1e
β).

Using the chain rule to evaluate the derivative of `(β) we get

`′(β) = K1 −K
1

z0 + z1eβ
· z1e

β

Setting `′(β) to find the maximum likelihood estimator for β we get

K1 = Kz1e
β

z0 + z1eβ

K1(z0 + z1e
β) = Kz1e

β

K1z0 = (K −K1)z1e
β

eβ = K1z0

(K −K1)z1
= K1z0

K0z1

β = ln
(
K1z0

K0z1

)
.

So the maximum partial likelihood for β is

β̂ = ln
(
K1z0

K0z1

)
.

Problem 5

a) The Laplace transform of a stochastic variable Z is defined as

L (c) = E[e−cZ ].
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For a Z that are exponentially distributed with mean 1/λ we then get

L (c) =
∫ ∞

0
e−czλe−λzdz

= λ
∫ ∞

0
e−(λ+c)zdz

= λ
[
− 1
λ+ c

e−(λ+c)z
]∞

0

= λ ·
(
− 1
λ+ c

· 0−
(
− 1
λ+ c

· e0
))

= λ

λ+ c

To show the given formula for L (r)(c) we first check that it is correct for
r = 0,

L (0)(c) = (−1)0 λ · 0!
(λ+ c)0+1 = λ

λ+ c
,

which is equal to L (c) as it should. Then we do the induction step, i.e. we
assume the given formula to be correct for r = s and use this to check the
formula for r = s + 1. As we now have assumed the formula to be correct
for r = s we have that

L (s)(c) = (−1)s λ · s!
(λ+ c)s+1

= (−1)sλ(s!)(λ+ c)−(s+1).

Taking the derivative of this expression with respect to c we get

L (s+1)(c) = (−1)sλ(s!)(−(s+ 1))(λ+ c)−(s+1)−1

= (−1)s+1λ((s+ 1)!)(λ+ c)−((s+1)+1)

= (−1)s+1 λ · (s+ 1)!
(λ+ c)(s+1)+1 .

We see that this last expression is identical to what we get by inserting
r = s + 1 in the given expression for L (r)(c), and we have thereby shown
that the given formula is correct for r = 0, 1, 2, . . ..

b) The situation given in the problem text is identical to the situation discussed
in Section 7.2.2 in ABG, so the log-likelihood is given by (7.3) in ABG,

`(λ, k) =
m∑
i=1

 ni∑
j=1

Dij ln(α(T̃ij)) + ln
(
(−1)Di•L (Di•)(Vi)

) ,
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where
Vi =

ni∑
j=1

A(T̃ij).

From the given formula for α(t|Z) we have that α(t) = tk−1, which gives

A(t) =
∫ t

0
α(u)du =

∫ t

0
uk−1du =

[
uk

k

]t
0

= tk

k
,

which in turn gives

Vi =
ni∑
j=1

T̃ k

k
= 1
k

ni∑
j=1

T̃ kij.

Inserting the expressions we have for α(t), Vi and L (r)(c) into the expression
for `(λ, k) we get

`(λ, k) =
m∑
i=1

 ni∑
j=1

Dij ln(T̃ k−1
ij ) + ln

(−1)Di• · (−1)Di•
λ ·Di•!

(λ+ 1
k

∑ni
j=1 T̃

k
ij)Di•+1


=

m∑
i=1

ni∑
j=1

Dij(k − 1) ln(T̃ij) +
m∑
i=1

ln(λ) + ln(Di•)!)− (Di• + 1) ln
λ+ 1

k

ni∑
j=1

T̃ kij


= (k − 1)

m∑
i=1

ni∑
j=1

Dij ln(T̃ij) +m ln(λ) +
m∑
i=1

ln(Di•!)−
m∑
i=1

(Di• + 1) ln
λ+ 1

k

ni∑
j=1

T̃ kij

 .
To (try to) find expressions for the maximum likelihood estimators we need
to find expressions for the partial derivatives of the log-likelihood function,

∂`

∂λ
= m

λ
−

m∑
i=1

Di• + 1
λ+ 1

k

∑ni
j=1 T̃

k
ij

,

∂`

∂k
=

m∑
i=1

ni∑
j=1

Dij ln(T̃ij)−
m∑
i=1

(Di• + 1) ·
− 1
k2
∑ni
j=1 T̃

k
ij + 1

k

∑ni
j=1 T̃

k
ij ln(T̃ij)

λ+ 1
k

∑ni
j=1 T̃

k
ij

.

We see that in both partial derivatives both λ and k appears in the denomi-
nator of the fraction inside the sum over i, so when equating them to zero we
are not able to solve any of the two resulting equations with respect to any of
the two parameters. To find the maximum likelihood estimates we therefore
need to resort to numerical optimisation, for example the Newton-Raphson
algorithm.
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Problem 6

Since Zi ≥ 0 for all i we must have that X(t) −X(s) ≥ 0 for all t ≥ s. Thereby,
for t > s,

E[X(t)|Fs] = E[(X(t)−X(s)) +X(s)|Fs] = E[X(t)−X(s)|Fs] +X(s) ≥ X(s).

In a counting process at most one event can happen at the same time, so dN(t) ∈
{0, 1}. If dN(t) = 0 we clearly have dX(t) = 0, whereas if dN(t) = 1 we have
dX(t) = ZN(t). We can write this more compactly as

dX(t) = dN(t) · ZN(t).

Since ZN(t) ∈ {0, 1} we have dN(t) · ZN(t) ∈ {0, 1}, which gives that

dX?(t) = E[dX(t)|Ft−] = E[dN(t) · ZN(t)|Ft−]
= P (dN(t) · ZN(t) = 1|Ft−)
= P (dN(t) = 1, ZN(t) = 1|Ft−)
= P (dN(t) = 1|Ft−) · P (ZN(t) = 1|Ft−, dN(t) = 1).

The definition of the intensity process λ(t) gives that P (dN(t) = 1|Ft−) = λ(t)dt.
When Ft− is given and we know that dN(t) = 1, we know the value of ZN(t−) and
that N(t) = N(t−) + 1. Since the counting process N(t) is independent of the Zi
chain, the Markov structure of {Zi}∞i=1 thereby implies that

P (ZN(t) = 1|Ft−, dN(t) = 1) = P (ZN(t) = 1|ZN(t−))
= αI(ZN(t−) = 0) + (1− β)I(ZN(t−) = 1)
= α(1− ZN(t−)) + (1− β)ZN(t−).

Thereby we have

dX?(t) = (α(1− ZN(t−)) + (1− β)ZN(t−))λ(t)dt.

To get the compensator we integrate the incremental process dX?(t) from zero to
t,

X?(t) =
∫ t

0
dX?(u)du =

∫ t

0
(α(1− ZN(u−)) + (1− β)ZN(u−))λ(u)du.
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Using that ZN(u−) is constant between two subsequent event times Ti−1 and Ti we
get

X?(t) =
N(t−)∑

i=1

∫ Ti

Ti−1
(α(1− ZN(u−)) + (1− β)ZN(u−))λ(u)du


+
∫ t

TN(t−)

(α(1− ZN(u−)) + (1− β)ZN(u−))λ(u)du

=
N(t−)∑

i=1

∫ Ti

Ti−1
(α(1− Zi−1) + (1− β)Zi−1)λ(u)du


+
∫ t

TN(t−)

(α(1− ZN(u−)) + (1− β)ZN(u−))λ(u)du

=
N(t−)∑

i=1
(α(1− Zi−1) + (1− β)Zi−1)

∫ Ti

Ti−1
λ(u)du


+ (α(1− ZN(u−)) + (1− β)ZN(u−))

∫ t

TN(t−)

λ(u)du

=
N(t−)∑

i=1
(α(1− Zi−1) + (1− β)Zi−1)(Λ(Ti)− Λ(Ti−1))


+ (α(1− ZN(t−)) + (1− β)ZN(t−))(Λ(t)− Λ(TN(t−))),

where Λ(t) =
∫ t

0 λ(u)du is the integrated intensity process of the counting process
N(t).


