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Figure 1: Estimated survival function Ŝ(t) for t ∈ [0, 1.75]. How to estimate the median
survival time is illustrated with a dotted line.

Problem 1

The Kaplan-Meier estimator is

Ŝ(t) =
∏

j:Tj≤t

(
1 − 1

Y (Tj)

)
. (1)

In the data set we have only three observed survival times, namely 0.70, 1.04 and
1.15. The number of individuals under risk just prior to each of these three times
are Y (0.70) = 6, Y (1.04) = 4 and Y (1.15) = 2, respectively. Thereby, for t < 0.70
we have Ŝ(t) = 1, for t ∈ [0.70, 1.04) we have Ŝ(t) = 1 − 1

6 = 5
6 = 0.833, for

t ∈ [1.04, 1.15) we have Ŝ(t) = 5
6 ·
(
1 − 1

4

)
= 0.625, and for t ≥ 1.15 we have

Ŝ(t) = 0.625 ·
(
1 − 1

2

)
= 0.3125.

A plot of Ŝ(t) is given in Figure 1.

The median survival time can estimated from Ŝ(t) as illustrated in Figure 1, and
here the estimated median survival time becomes 1.15.
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Problem 2

We start by finding the cumulativ distribution function,

F (t) =
∫ t

0
f(u)du =

∫ t

0
φe−θu exp

{
−φ

θ

(
1 − eθu

)}
du

=
[
− exp

{
−φ

θ

(
1 − e−θu

)}]u=t

u=0

= − exp
{

−φ

θ

(
1 − e−θt

)}
− (−1)

= 1 − exp
{

−φ

θ

(
1 − e−θt

)}
.

The survival function thereby becomes

S(t) = 1 − F (t) = exp
{

−φ

θ

(
1 − e−θt

)}
.

Since we have that S(t) = e−A(t), this in turn gives that the integrated hazard rate
is

A(t) = − ln(S(t)) = −
(

−φ

θ

(
1 − e−θt

))
= φ

θ

(
1 − e−θt

)
,

which gives the hazard rate

α(t) = A′(t) = φ

θ
· (−e−θt) · (−θ) = φe−θt.

Problem 3

From the problem text we have that

N(t) =
∫ t

0
λ(s)ds + M(t) =

∫ t

0
Y (s)α(s)ds + M(t),

which in incremental form becomes

dN(t) = Y (t)α(t)dt + dM(t).

Inserting this into the expression for the Nelson-Aalen estimator we get

Â(t) =
∫ t

0

J(s)
Y (s) (Y (s)α(s)ds + dM(s))

=
∫ t

0
J(s)α(s)ds +

∫ t

0

J(s)
Y (s)dM(s)

= A⋆(t) +
∫ t

0

J(s)
Y (s)dM(s),
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where we in the last transition have used how A⋆(t) is defined in the problem text.
Thus, we have

Â(t) − A⋆(t) =
∫ t

0

J(s)
Y (s)dM(s), (2)

as we should show. The Y (s) is by definition a predictable process, and since
J(s) = I(Y (s) > 0) is just a function of Y (s) also J(s) becomes a predictable
process. Thereby also the integrand above, J(s)/Y (s), is a predictable process,
so the right hand side of (2) is a stochastic integral with respect to a mean zero
martingale. As we know that a stochastic integral with respect to a mean zero
martingale is itself a mean zero martingale, we thereby have that Â(t) − A⋆(t) is
a mean zero martingale.

Using (2) and computational rules for the optional variation process of a stochastic
integral we get [

Â − A⋆
]

(t) =
[∫ J

Y
dM

]
(t)

=
∫ t

0

(
J(s)
Y (s)

)2

d[M ](s)

=
∫ t

0

J(s)2

Y (s)2 d[M ](s).

Since J(s) is an indicator function we have that J(s)2 = J(s). Moreover, for
counting process martingales we know that [M ](s) = N(s) so we get that[

Â − A⋆
]

(t) =
∫ t

0

J(s)
Y (s)2 dN(s). (3)

Since the right hand side of (3) is an integral with respect to a counting process,
the integral just becomes a sum over the times where the counting process jumps.
Thus, by using that whenever dN(s) = 1 we must have that J(s) = 1, we get[

Â − A⋆
]

(t) =
∑

j:Tj≤t

1
Y (s)2 = σ̂2(s). (4)

We generally know that the variance of a mean zero martingale at any time t
equals the expected value of the associated optional variation process at the same
time t. Combining this result for Â(t) − A⋆(t) with (4) we get

Var
(
Â(t) − A⋆(t)

)
= E

([
Â − A⋆

]
(t)
)

= E
(
σ̂2(t)

)
.

This equation says that σ̂2(t) is an unbiased estimator for the variance of Â(t) −
A⋆(t), which is exactly what we should show.
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Problem 4

a) Taking the logarithm of the general expression for the partial likelihood given
in the problem text, and using that the covariates are time invariant and that
β and xℓ are vectors of size two in our situation, we get

ℓ(β1, β2) =
∑

j

βT xij
− ln

∑
ℓ∈Rj

eβT xℓ


=
∑

j

[
β1xij1 + β2xij2

]
−
∑

j

ln
∑

ℓ∈Rj

exp {β1xℓ1 + β2xℓ2}

 .

Since components that fails is immediately repaired we have that all com-
ponents are under risk for failure at all times, so Rj = {1, . . . , n} for all j.
This gives that

ℓ(β1, β2) =
∑

j

[
β1xij1 + β2xij2

]
−
∑

j

ln
(

n∑
ℓ=1

exp {β1xℓ1 + β2xℓ2}
)

=
∑

j

[
β1xij1 + β2xij2

]
− m ln

(
n∑

ℓ=1
exp {β1xℓ1 + β2xℓ2}

)
,

where m is the total number of observed failures, and we in the last transition
have used that both covariates are time invariant. Next, we use that xℓ1 ∈
{0, 1} to split each of the two sums above into a sum of two sums,

ℓ(β1, β2) =
∑

j:xij 1=0
β2xij2 +

∑
j:xij 1=1

[
β1 + β2xij2

]

− m ln
 ∑

ℓ:xℓ1=0
exp {β2xℓ2} +

∑
ℓ:xℓ1=1

exp {β1 + β2xℓ2}


= m(1)β1 + β2

∑
j

xij2 − m ln
 ∑

ℓ:xℓ1=0
exp {β2xℓ2} + eβ1

∑
ℓ:xℓ1=1

exp {β2xℓ2}


= m(1)β1 + β2

∑
j

xij2 − m ln
(
h0(β2) + eβ1h1(β2)

)
,

where m(1) = ∑
j:xij 1=1 1 is the number of failures for components from man-

ufacturer B, and h0(β2) and h1(β2) are as given in the problem text. This is
exactly the expression we were asked to show.

b) To try to find analytical expressions for the maximum partial likelihood
estimators we start to find expressions for the partial derivatives. We start
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with the partial derivative with respect to β1,

∂ℓ

∂β1
= m(1) − m · eβ1h1(β2)

h0(β2) + eβ1h1(β2)

= m(1) − m · h1(β2)
e−β1h0(β2) + h1(β2)

.

We see that we easily can solve ∂ℓ
∂β1

= 0 with respect to e−β1 , and thereby
also with respect to β1. We get

e−β =
h1(β2)
m(1)

h0(β2)
m(0)

,

β1 = ln
(

h0(β2)
m(0)

)
− ln

(
h1(β2)
m(1)

)
, (5)

where m(0) = m − m(1) is the number of failures for components from manu-
facturer A. Thereby we have a corresponding relation between the estimators
β̂1 and β̂2,

β̂1 = ln
(

h0(β̂2)
m(0)

)
− ln

(
h1(β̂2)
m(1)

)
.

The partial derivative of the log partial likelihood function with respect to
β2 becomes

∂ℓ

∂β2
=
∑

j

xij2 − m · h′
0(β2) + eβ1h′

1(β2)
h0(β2) + eβ1h1(β2)

, (6)

where

h′
0(β2) =

∑
ℓ:xℓ1=0

xℓ2 exp {β2xℓ2} ,

h′
1(β2) =

∑
ℓ:xℓ1=1

xℓ2 exp {β2xℓ2} .

When inserting the expressions for h′
0(β1) and h′

1(β2) into (6) we see that
there is no way of getting β2 outside the various sums. Thereby it is not
possible to solve ∂ℓ

∂β2
= 0 with respect to β2, and this doesn’t change if we

insert the expression we found above for β1 as a function of β2.
To find β̂2 we therefore need to optimise numerically the resulting log profile
partial likelihood for β2, which we get by inserting (5) into the expression
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for the log-likelihood. The log profile partial likelihood for β2 thus becomes

ℓp(β2) = m(1) ln
(

h0(β2)
m(0)

)
− m ln

(
h1(β2)
m(1)

)
+ β2

∑
j

xij2 − m ln
h0(β2) +

h0(β2)
m(0)

h1(β2)
m(1)

· h1(β2)


= const + m(1) ln(h0(β2)) − m ln(h1(β2)) + β2
∑

j

xij2 − m ln(h0(β2))

= const + β2
∑

j

xij2 − m(0) ln(h0(β2)) − m(1) ln(h1(β2)),

where const is a term that is constant as a function of β2.

Problem 5

a) When agei = 45 and sexmalei = 0 the estimated intensity process is

λi(t) = b̂tk̂−1 exp
{
β̂1 · 45 + β̂2 · 0

}
.

From the R output we find the parameter estimates

µ̂ = 11.24975,

γ̂1 = −0.03995,

γ̂2 = −0.16387,

τ̂ = −0.33389.

Transforming to the other parameterisation we get the estimates

b̂ = exp
{
−
[
τ̂ + µ̂e−τ̂

]}
= 2.102133 · 10−7,

β̂1 = −γ̂1e
−τ̂ = 0.05578576,

β̂2 = −γ̂2e
−τ̂ = 0.2288264,

k̂ = e−τ̂ = 1.39639.

So the estimated intensity process becomes

λi(t) = 2.102133 · 10−7 · t0.39639 exp {0.05578576 · 45 + 0.2288264 · 0}

= 2.587589 · 10−6 · t0.39639.

To find a 95% confidence interval for k we first find a 95% confidence interval
for τ . As we know that the vector of parameter estimators is approximately



TMA4275 Lifetime Analysis, June 2nd 2023 Page 7 of 9

multivariate normal distributed, it follows that the estimator τ̂ has approx-
imately a univariate normal distribution. From the R output we find that
the standard deviation of τ̂ is estimated to ŜD[τ̂ ] = 0.05650. So thereby a
95% confidence interval for τ becomes[

τ̂ − z0.025ŜD[τ̂ ], τ̂ + z0.025ŜD[τ̂
]

= [−0.44463, −0.22315],

where we have used that z0.025 = 1.96. This implies that

P
(
τ̂ − z0.025ŜD[τ̂ ] ≤ τ ≤ τ̂ + z0.025ŜD[τ̂ ]

)
≈ 0.95,

which, using the relation k = e−τ ⇔ τ = − ln(k), gives that

P
(
τ̂ − z0.025ŜD[τ̂ ] ≤ − ln(k) ≤ τ̂ + z0.025ŜD[τ̂ ]

)
≈ 0.95

P
(
−
(
τ̂ + z0.025ŜD[τ̂ ]

)
≤ ln(k) ≤ −

(
τ̂ − z0.025ŜD[τ̂ ]

))
≈ 0.95

P
(
exp

{
−
(
τ̂ + z0.025ŜD[τ̂ ]

)}
≤ k ≤ exp

{
−
(
τ̂ − z0.025ŜD[τ̂ ]

)})
≈ 0.95

So thereby a 95% confidence interval for k is[
exp

{
−
(
τ̂ + z0.025ŜD[τ̂ ]

)}
, exp

{
−
(
τ̂ − z0.025ŜD[τ̂ ]

)}]
= [exp {−(−0.22315)} , exp {−(−0.44463)}]
= [1.250008, 1.559913].

In an exponential regression model one would have k = 1. As the confidence
interval for k does not include the value 1, one should not expect the expo-
nential regression model to give a good fit to this dataset. Alternatively one
can see the same directly from the parameter esimates given by R. In the
R parameterisation, an exponential regression model would have τ = 0, and
from the R output we see that the τ parameter is significantly different from
zero (with a p-value of 3.4 · 10−9).

b) When agei = 50 and sexmalei = 1 the estimated intensity process is

λi(t) = b̂tk̂−1 exp{β̂1 · 50 + β̂2 · 1} (7)
= 2.102133 · 10−7 · t1.39639−1 exp{0.05578576 · 50 + 0.2288264}
= 4.299427 · 10−6 · t1.39639−1.

The corresponding integrated intensity process becomes

Λi(t) =
∫ t

0
λi(u)du = 4.299427 · 10−6

1.39639 · t1.39639

= 3.078959 · 10−6 · t1.39639.
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The corresponding (estimated) survival function becomes

Ŝi(t) = exp{−Λi(t)}
= exp{−3.078959 · 10−6t1.39639}.

In particular we have

Ŝi(10 000) = exp{−3.078959 · 10−6100001.39639} = 0.3055413.

To find a 95% confidence interval for S(10 000) we can first combine (7) with
the given expressions for b, β1, β2 and k as functions of µ, γ1, γ2 and τ to
find an expression for S(10 000) as a function of µ, γ1, γ2 and τ ,

S(10 000) = g(µ, γ1, γ2, τ)

say. Correspondingly we then have

Ŝ(10 000) = g(µ̂, γ̂1, γ̂2, τ̂).

We can then do a Taylor series expansion of g around the true (unkown)
parameter values µ, γ1, γ2 and τ , and make an approximation by including
only the zero and first order terms. So we then get

Ŝ(10 000) = g(µ̂, γ̂1, γ̂2, τ̂) ≈ g(µ, γ1, γ2, τ) + ∂g

∂µ
(µ, γ1, γ2, τ)(µ̂ − µ)

+ ∂g

∂γ1
(µ, γ1, γ2, τ)(γ̂1 − γ1) + ∂g

∂γ2
(µ, γ1, γ2, τ)(γ̂2 − γ2)

+ ∂g

∂τ
(µ, γ1, γ2, τ)(τ̂ − τ),

which is a linear function of the vector (µ̂, γ̂1, γ̂2, τ̂). We know from general
theory that (µ̂, γ̂1, γ̂2, τ̂) is approximately multivariate normal with mean
vector (µ, γ1, γ2, τ) and a covariance matrix for which we have an estimate
given in the R output. We thereby have that Ŝ(10 000) is approximately
normal. Using the linearised expression above we find that

E[Ŝ(10 000)] = g(µ, γ1, γ2, τ) = S(10 000).

We can correspondingly find an expression for the variance, which will be
a function of the unknown parameters via the expressions for the partial
derivatives and a function of the covariance matrix for (µ̂, γ̂1, γ̂2, τ̂). We can
then find an estimate of the variance by, in the expression for the variance of
Ŝ(10 000), plugging in the estimates µ̂, γ̂1, γ̂2, τ̂ for µ, γ1, γ2, γ2 and using the
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estimated covariance matrix for (µ̂, γ̂1, γ̂2, τ̂) provided by R. Thus, we now
have that

Ŝ(10 000) ≈ N(S(10 000), σ2),

where σ2 is the value we found as an estimate for the variance of Ŝ(10 000).
Finally from this we easily find the confidence interval for S(10 000) as[

Ŝ(10 000) − z0.025σ, Ŝ(10 000) + z0.025σ
]

.


