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Problem 1

We first use the given hazard rate a(t) to find the integrated hazard rate A(t) and
the survival function S(t),

t t 4 47t 4
A(t):/ &(u)du:/ oubdu = u} _4s
0 0 3 Jo 3

St)=P(T >t) = e A0 = ¢ 3t%,

[V

Using the formula for S(¢) we can then find the two probabilities,

3
2

P(T > 1.5) = S(1.5) = e 3% = 0.086338,

P(T<2|T>15)_P(T§2ﬂT>1.5)_P(1.5<T§2)_P(ng)_p(T§1'5)
B Y P(T>15  P(T>15 P(T > 1.5)

(1-P(T>2)—(1-P(T>15) P(T>15) —P(T>?2)

P(T > 1.5) P(T > 1.5)

CS(15)—S@2)  exp{-3-155} —exp{—§.28}
ES exp {~ 1158} = 0.733331.

1
S ==
(m) =5
_apd 1
e 3™ = 5
4

—gm% = —1In(2)
3

m2 = 1 In(2)

3 3
m = <4ln(2)> = (0.646534
Problem 2 The estimated risk function is

r(x,3) = exp {0.04681 - 21 — 0.29279 - 25 + 0.15813 - x5}
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The hazard rate of an individual with x = |2, —2, z3]7 is

aft|r) = ag(t) - exp{Biz1 + B2 - (—2) + Bsxs},

and the hazard rate of an individual with Z = [z1,2, 23] is

aft|r) = ag(t) - exp{Bix1 + B2 - 2 + Baxs}.

When the values of x; and for x3 are equal for the two individuals, the ratio
between the two hazard rates becomes

aftle) e,

a(t|T) e2p

From the R output we see that a 95% confidence interval for 35 is
[—0.29279 — 1.96 - 0.09810, —0.29279 + 1.96 - 0.09810] = [—0.485066, —0.100514].

Noting that e=%% is a strictly decreasing function of f,, the corresponding 95%
confidence interval for e=4% becomes

[6-4'<—0-1°°514>, 6—4'<—0-485066>] = [1.494895, 6.960588)].

What to do next in the analysis of the data set? We see that the covariate x is
clearly not significant, whereas the covariate x3 is in the border of being significant.
It would therefore be natural to try a model where the covariate x; is removed.
Then there are two possibilities, either the covariate x3 is significant in such a
model, or x3 is not significant. If x3 is not significant in such a reduced a model
it would be natural to remove also x3 from the model. Thereafter, having settled
on a model with either both x5 and x3 as covariates or a model with only s, it
would be natural to check how well the estimated model fit the data by looking at
for example the martingale residuals.

Problem 3

a) We let k4 and kp denote the number of observed failures for units of type A
and type B, respectively. The observed failure times for units of type A we
denote by T4, ..., T, k“;, and the observed failure times for units of type B we
correspondingly denote by TF,... T2 .



TMA4275 Lifetime Analysis, May 21st 2024 Page 3 of 9

The likelihood function is then given by

L B,7) = [T] Aa(T)

=1

ka 1 [ks -
=11 a(T]A)V_l 11 5(7}3)7_1 - exp {—/ nat’ ! + mﬁt'y_ldt}
=1 j=1

- exp {— /0 tnaa(t) + m)\B(t))dt}

: [ﬁ A (T])

j=1

0

Y Y

[ ka kp
=11 a(T]A)v—l T 5(TJB)W—1 - exp {_MT’Y _ mﬁﬂ}
Lj=1 lj=1 l

The log-likelihood function becomes

l(a, B,7) =In L, B,7)

kA kB
:Z{lna%—(y—l)lnTjA]+Z{1n5+(7_1)1nTJB}_%77_@77
j=1 j=1 v Y
A bz no mp
=kalna+(y—1)Y T  +kglnf+(y—1)Y TP — —77 — —=77
j=1 j=1 g g
ka kp ka
:—[ZanA+ZlnTJB +halna+kpln B+ |> T +Inf2 In TP
J=1 J=1 j=1
_na,_mb,
Y v
:30+811Ha+821n5+337—%7—7_@77’
g v

where

Y

kA kp
so=—|> T +> InTP
j=1 j=1

S1 = kA)

S9 = kB,

ka kp
S3 = ZlnTjA + ZlnTjB
j=1 j=1
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b) The partial derivatives of the log likelihood function becomes

ol  s; n .

— == -7/

Ja  a v

ol S9 m 5

— == T/

B s v

o mnm [ Mg - | g
9y g g g

We see that we easily can solve % =0 and g—é = ( with respect to a and f3,
respectively, and thereby express v and [ in terms of ~. It is more unclear
what we can do with the partial derivative with respect to . Starting with

setting the partial derivatives with respect to « and 3 equal to zero, we get

%:O@Oé:MT_W,
oo n

or Sy,
%—O@B—mT .

Inserting these expressions for a and 3 in the expression for the log likelihood
function we get the profile likelihood for ~,

S$17Y7 _ Sy _

=so+s1(Insg+Iny—Inn —~vyIn7) + sy(Insy +Iny —Inm — yIn7)
nosy L, mos

yoom
= S4+S5’7+861n’y7

where

S4 =580+ s1Insy +s9lnsy —s;Inn — sglnm — s; — s9,
S5 =83 — (81 + s9)InT,

Sg — S1 + $9.

Now we can note that this profile likelihood can be optimised analytically.
We have that

S6
é;(’)/) =S5+ ;’

which gives
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The maximum likelihood estimators for «, § and v thereby becomes

~ S6
Y=
S5
~ 817 -5 51 8¢ 36
o= —T = — T 57
n nSs
S 8y o S92 S¢ 36
5 = —7T Y = — T 5
m mss
One should note that
~ S6 1
V= _;5 T (s1+s2)InT—s3
s1+s2
1
o 1 Z] 1lnTA+Zkb lnTB -7
nr - ka+ky

because In7 > In7T and In7 > In T for all j. So we have a, 3,7 > 0.

Problem 4
a) On incremental form the Doob-Meyer decomposition of N(¢) is
dN(s) = A(s)ds + dM(s) = Y (s)a(s)ds + dM(s).

Using this we get that

o - (3

(s)
- s)d / dM
/ S ) vt
Combining this with the definition of Af(t) we get that

fl(t)—Asw—/tJ() (s + [ 513 aM() - [ I(ehan(s)ds

_/ —ao(s))ds—i—/o Y(SS)dM

as we should show. On incremental form this expression reads

J(s)
Y(s)

(Y(s)a(s)ds 4+ dM(s))

dA(s) — dA4(s) = J(s)(a(s) — ag(s))ds + dM(s),
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b)

which gives

Zt0) = | Y (s) (dA(s) - dAy(s))

0

- ["¥) <J<s><a<s> — an(s))ds + j(()) dM<s>)

= /Oto J(s)Y (s)(a(s) — ao(s))ds + /Oto J(s)dM(s).

When H is true we have a(s) = ag(s) for all s € [0, t] so that the integrand
in the first integral is identical to zero. Thereby, when Hj is true we have

Z(t) = | * J(s)dM(s).

By definition Y'(s) is a predictable function with respect to the history F;.
Thereby also the indicator function J(s) = I(Y(s) > 0 becomes predictable
with respect to the same history, which implies that Z(¢y) is a stochastic
integral with respect to a mean zero martingale. The Z(t,) is thereby also a
mean zero martingale when Hj is true, which in particular implies that

E[Z(ty)] = 0.

Assuming H to be true we have from the above that

Z(t) = | " J(s)dM(s),

where M(s) is a counting process martingale. This gives that

(2)(t) = [ ((s))d(0) ).

Since J(s) is an indicator function we have that (J(s))? = J(s), so that
to

(Z)to) = [ T(s)d(M) (s)

0

Since M (s) is a counting process martingale we have that

() = | "As)ds = / Y (s)a(s)ds,

which in incremental form reads
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where we have used that a(s) = ag(s) for all s € [0,tg] when Hy is true.
Inserting this last expression in our expression for Z(ty) we get

(2)(t0) = [ ® 1(8)Y (5)aw(s)ds.

We have that J(s)Y (s) = Y (s) since J(s) equals zero only if Y (s) = 0, and
is one otherwise. So we have

to

(Z)(ty) = / Y (s)ao(s)ds.

0

As we know
Var[Z(to)] = E[(Z)(to)]

this gives that

Var|[Z(tg)] = E [/Oto Y (s)ao(s)ds|,

and thereby an unbiased estimator for Var[Z(ty)] is

—

var[Z(io)] = [ "V (s)a(s)ds.

Using martingale limit theorems one can show that Z(ty) is approximately
normal. As test statistic one therefore use

Z(to)
VIR Y (s)ao(s)ds.
which one can show is approximately standard normal. So one reject Hy

if the absolute value of this test statistic is sufficiently much different from
Zero.

Problem 5

a) The Nelson-Aalen estimator Ay (t) is a step function starting at zero at time
t = 0 and having steps whenever a transition from state 0 to state 1 is
observed. In the time interval ¢ € [0, 1] transitions from state 0 to state 1 is
observed at the times

0.11(unit 4),0.53(unit 1), 0.92(unit 4).
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b)

0.11 0.53 0.92 1.0t

Figure 1: A plot of the Nelson-Aalen estimator Ay (¢) for ¢ € [0, 1.0].

The Ag(t) therefore have jumps for t € {0.11,0.53,0.92}. To decide the
height of the jumps we need to decide the number of units that are in state
0, Yo(t), just before each at these times. Just before time ¢t = 0.11 all the
units are still in state 0, so Yy(0.11) = 5. Just before time ¢ = 0.53 all the
units are also in state 0 (since unit 4 has returned to state 0 before this time),
so Y5(0.53) = 5. Just before time ¢ = 0.92 we see that unit 1 is in state 1,
states 2 and 3 are still in state 0, unit 4 is in state 0 and unit 5 is in state 2,
so Y5(0.92) = 3. Thereby we have

A (t) =0 for t €[0,0.11),
- 1
A()l(t) = 5 fort € [011,053),

- 1 1 2
- 1 1 1 11
A01(t):5+5+§:75 t €[0.92,1.0].

A plot of Ay (t) for t € [0,1.0] is shown in Figure 1.

To find P(0.50, 0.75) we need first to find all event times in the time interval
t € (0.50,1.0]. These event times are ¢t = 0.53 and 0.57. Thereby we have
P(0.50,0.75) = (I + AA(0.53))(I + AA(0.57))

At time ¢t = 0.53 we observe a transition from state 0 to state 1, and we have
as previously discussed Y;(0.53) = 5, so

1 1
- —5 5
AA(053) =] 0 0 0
0 00
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At time ¢t = 0.57 we observe at transition from state 0 to state 2, and we
have Y5(0.57) =4, so

1 g 1
e 4 1
AA057)=| 0 0 0
0 0 0
We thereby get
_ (15 5 0] [1=3 03
P(0.50,0.75) = 0 1 0 0 10
0 0 1 0 01
(5 5 0] [3 03
=010 010
10 0 1] 0 01
T3 1 17
5 5 5
=101 0
1 0 0 1|




