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Problem 1

We first use the given hazard rate α(t) to find the integrated hazard rate A(t) and
the survival function S(t),

A(t) =
∫ t

0
α(u)du =

∫ t

0
2u

1
2 du =

[4
3u

3
2

]t

0
= 4

3t
3
2 ,

S(t) = P (T > t) = e−A(t) = e− 4
3 t

3
2 .

Using the formula for S(t) we can then find the two probabilities,

P (T > 1.5) = S(1.5) = e− 4
3 ·1.5

3
2 = 0.086338,

P (T ≤ 2|T > 1.5) = P (T ≤ 2 ∩ T > 1.5)
P (T > 1.5) = P (1.5 < T ≤ 2)

P (T > 1.5) = P (T ≤ 2) − P (T ≤ 1.5)
P (T > 1.5)

= (1 − P (T > 2)) − (1 − P (T > 1.5))
P (T > 1.5) = P (T > 1.5) − P (T > 2)

P (T > 1.5)

= S(1.5) − S(2)
S(1.5) =

exp
{
−4

3 · 1.5 3
2
}

− exp
{
−4

3 · 2 3
2
}

exp
{
−4

3 · 1.5 3
2
} = 0.733331.

Letting m denote the median in the distribution of T , the value of m is given by

S(m) = 1
2

e− 4
3 m

3
2 = 1

2
−4

3m
3
2 = − ln(2)

m
3
2 = 3

4 ln(2)

m =
(3

4 ln(2)
) 2

3
= 0.646534.

Problem 2 The estimated risk function is

r(x, β̂) = exp {0.04681 · x1 − 0.29279 · x2 + 0.15813 · x3}.
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The hazard rate of an individual with x = [x1, −2, x3]T is

α(t|x) = α0(t) · exp{β1x1 + β2 · (−2) + β3x3},

and the hazard rate of an individual with x̃ = [x1, 2, x3]T is

α(t|x) = α0(t) · exp{β1x1 + β2 · 2 + β3x3}.

When the values of x1 and for x3 are equal for the two individuals, the ratio
between the two hazard rates becomes

α(t|x)
α(t|x̃) = e−2β2

e2β
= e−4β2 .

From the R output we see that a 95% confidence interval for β2 is

[−0.29279 − 1.96 · 0.09810, −0.29279 + 1.96 · 0.09810] = [−0.485066, −0.100514].

Noting that e−4β2 is a strictly decreasing function of β2, the corresponding 95%
confidence interval for e−4β2 becomes[

e−4·(−0.100514), e−4·(−0.485066)
]

= [1.494895, 6.960588].

What to do next in the analysis of the data set? We see that the covariate x1 is
clearly not significant, whereas the covariate x3 is in the border of being significant.
It would therefore be natural to try a model where the covariate x1 is removed.
Then there are two possibilities, either the covariate x3 is significant in such a
model, or x3 is not significant. If x3 is not significant in such a reduced a model
it would be natural to remove also x3 from the model. Thereafter, having settled
on a model with either both x2 and x3 as covariates or a model with only x2, it
would be natural to check how well the estimated model fit the data by looking at
for example the martingale residuals.

Problem 3

a) We let kA and kB denote the number of observed failures for units of type A
and type B, respectively. The observed failure times for units of type A we
denote by T A

1 , . . . , T A
kA

, and the observed failure times for units of type B we
correspondingly denote by T B

1 , . . . , T B
kB

.
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The likelihood function is then given by

L(α, β, γ) =
 kA∏

j=1
λA(T A

j )
 ·

 kB∏
j=1

λB(T B
j )
 · exp

{
−
∫ τ

0
(nλA(t) + mλB(t))dt

}

=
 kA∏

j=1
α(T A

j )γ−1

 ·

 kB∏
j=1

β(T B
j )γ−1

 · exp
{

−
∫ τ

0
nαtγ−1 + mβtγ−1dt

}

=
 kA∏

j=1
α(T A

j )γ−1

 ·

 kB∏
j=1

β(T B
j )γ−1

 · exp
{

−nα

γ
τ γ − mβ

γ
τ γ

}

The log-likelihood function becomes

ℓ(α, β, γ) = ln L(α, β, γ)

=
kA∑
j=1

[
ln α + (γ − 1) ln T A

j

]
+

kB∑
j=1

[
ln β + (γ − 1) ln T B

j

]
− nα

γ
τ γ − mβ

γ
τ γ

= kA ln α + (γ − 1)
kA∑
j=1

ln T A
j + kB ln β + (γ − 1)

kB∑
j=1

ln T B
j − nα

γ
τ γ − mβ

γ
τ γ

= −

 kA∑
j=1

ln T A
j +

kB∑
j=1

ln T B
j

+ kA ln α + kB ln β + γ

 kA∑
j=1

ln T A
j + lnkB

j=1 ln T B
j


− nα

γ
τ γ − mβ

γ
τ γ

= s0 + s1 ln α + s2 ln β + s3γ − nα

γ
τ γ − mβ

γ
τ γ,

where

s0 = −

 kA∑
j=1

ln T A
j +

kB∑
j=1

ln T B
j

 ,

s1 = kA,

s2 = kB,

s3 =
 kA∑

j=1
ln T A

j +
kB∑
j=1

ln T B
j

 .
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b) The partial derivatives of the log likelihood function becomes

∂ℓ

∂α
= s1

α
− n

γ
τ γ,

∂ℓ

∂β
= s2

β
− m

γ
τ γ,

∂ℓ

∂γ
= s3 −

[
−nα

γ2 τ γ + nα

γ
τ γ ln τ

]
−
[
−mβ

γ2 τ γ + mβ

γ
τ γ ln τ

]
.

We see that we easily can solve ∂ℓ
∂α

= 0 and ∂ℓ
∂β

= 0 with respect to α and β,
respectively, and thereby express α and β in terms of γ. It is more unclear
what we can do with the partial derivative with respect to γ. Starting with
setting the partial derivatives with respect to α and β equal to zero, we get

∂ℓ

∂α
= 0 ⇔ α = s1γ

n
τ−γ,

∂ℓ

∂β
= 0 ⇔ β = s2γ

m
τ−γ.

Inserting these expressions for α and β in the expression for the log likelihood
function we get the profile likelihood for γ,

ℓp(γ) = ℓ
(

s1γ

n
τ−γ,

s2γ

m
τ−γ, γ

)
= s0 + s1(ln s1 + ln γ − ln n − γ ln τ) + s2(ln s2 + ln γ − ln m − γ ln τ)

+ s3γ − n

γ
· s1γ

n
τ−γ · τ γ − m

γ
· s2γ

m
τ−γ · τ γ

= s4 + s5γ + s6 ln γ,

where

s4 = s0 + s1 ln s1 + s2 ln s2 − s1 ln n − s2 ln m − s1 − s2,

s5 = s3 − (s1 + s2) ln τ,

s6 = s1 + s2.

Now we can note that this profile likelihood can be optimised analytically.
We have that

ℓ′
p(γ) = s5 + s6

γ
,

which gives

ℓ′
p(γ) = 0 ⇔ γ = −s6

s5
.
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The maximum likelihood estimators for α, β and γ thereby becomes

γ̂ = −s6

s5
,

α̂ = s1γ̂

n
τ−γ̂ = −s1 · s6

ns5
τ

− s6
s5 ,

β̂ = s2γ̂

m
τ−γ̂ = −s2 · s6

ms5
τ

− s6
s5 .

One should note that

γ̂ = −s6

s5
= 1

(s1+s2) ln τ−s3
s1+s2

= 1

ln τ −
∑kA

j=1 ln T A
j +
∑kb

j=1 ln T B
j

kA+kb

≥ 0,

because ln τ ≥ ln T A
j and ln τ ≥ ln T B

j for all j. So we have α̂, β̂, γ̂ ≥ 0.

Problem 4

a) On incremental form the Doob-Meyer decomposition of N(t) is

dN(s) = λ(s)ds + dM(s) = Y (s)α(s)ds + dM(s).

Using this we get that

Â(t) =
∫ t

0

J(s)
Y (s)dN(s) =

∫ t

0

J(s)
Y (s)(Y (s)α(s)ds + dM(s))

=
∫ t

0
J(s)α(s)ds +

∫ t

0

J(s)
Y (s)dM(s).

Combining this with the definition of A⋆
0(t) we get that

Â(t) − A⋆
0(t) =

∫ t

0
J(s)α(s)ds +

∫ t

0

J(s)
Y (s)dM(s) −

∫ t

0
J(s)α0(s)ds

=
∫ t

0
J(s)(α(s) − α0(s))ds +

∫ t

0

J(s)
Y (s)dM(s),

as we should show. On incremental form this expression reads

dÂ(s) − dA⋆
0(s) = J(s)(α(s) − α0(s))ds + J(s)

Y (s)dM(s),
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which gives

Z(t0) =
∫ t0

0
Y (s)

(
dÂ(s) − dA⋆

0(s)
)

=
∫ t0

0
Y (s)

(
J(s)(α(s) − α0(s))ds + J(s)

Y (s)dM(s)
)

=
∫ t0

0
J(s)Y (s)(α(s) − α0(s))ds +

∫ t0

0
J(s)dM(s).

When H0 is true we have α(s) = α0(s) for all s ∈ [0, t0] so that the integrand
in the first integral is identical to zero. Thereby, when H0 is true we have

Z(t0) =
∫ t0

0
J(s)dM(s).

By definition Y (s) is a predictable function with respect to the history Ft.
Thereby also the indicator function J(s) = I(Y (s) > 0 becomes predictable
with respect to the same history, which implies that Z(t0) is a stochastic
integral with respect to a mean zero martingale. The Z(t0) is thereby also a
mean zero martingale when H0 is true, which in particular implies that

E[Z(t0)] = 0.

b) Assuming H0 to be true we have from the above that

Z(t0) =
∫ t0

0
J(s)dM(s),

where M(s) is a counting process martingale. This gives that

⟨Z⟩(t0) =
∫ t0

0
(J(s))2d⟨M⟩(s).

Since J(s) is an indicator function we have that (J(s))2 = J(s), so that

⟨Z⟩(t0) =
∫ t0

0
J(s)d⟨M⟩(s).

Since M(s) is a counting process martingale we have that

⟨M⟩(t) =
∫ t

0
λ(s)ds =

∫ t

0
Y (s)α(s)ds,

which in incremental form reads

d⟨M⟩(s) = Y (s)α(s)ds = Y (s)α0(s)ds,



TMA4275 Lifetime Analysis, May 21st 2024 Page 7 of 9

where we have used that α(s) = α0(s) for all s ∈ [0, t0] when H0 is true.
Inserting this last expression in our expression for Z(t0) we get

⟨Z⟩(t0) =
∫ t0

0
J(s)Y (s)α0(s)ds.

We have that J(s)Y (s) = Y (s) since J(s) equals zero only if Y (s) = 0, and
is one otherwise. So we have

⟨Z⟩(t0) =
∫ t0

0
Y (s)α0(s)ds.

As we know

Var[Z(t0)] = E[⟨Z⟩(t0)]

this gives that

Var[Z(t0)] = E
[∫ t0

0
Y (s)α0(s)ds

]
,

and thereby an unbiased estimator for Var[Z(t0)] is

̂Var[Z(t0)] =
∫ t0

0
Y (s)α0(s)ds.

Using martingale limit theorems one can show that Z(t0) is approximately
normal. As test statistic one therefore use

Z(t0)√∫ t0
0 Y (s)α0(s)ds

,

which one can show is approximately standard normal. So one reject H0
if the absolute value of this test statistic is sufficiently much different from
zero.

Problem 5

a) The Nelson-Aalen estimator Â01(t) is a step function starting at zero at time
t = 0 and having steps whenever a transition from state 0 to state 1 is
observed. In the time interval t ∈ [0, 1] transitions from state 0 to state 1 is
observed at the times

0.11(unit 4), 0.53(unit 1), 0.92(unit 4).
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t

Â01(t)

0.11 0.53 0.92 1.0

1
5

2
5

11
15

Figure 1: A plot of the Nelson-Aalen estimator Â01(t) for t ∈ [0, 1.0].

The Â01(t) therefore have jumps for t ∈ {0.11, 0.53, 0.92}. To decide the
height of the jumps we need to decide the number of units that are in state
0, Y0(t), just before each at these times. Just before time t = 0.11 all the
units are still in state 0, so Y0(0.11) = 5. Just before time t = 0.53 all the
units are also in state 0 (since unit 4 has returned to state 0 before this time),
so Y0(0.53) = 5. Just before time t = 0.92 we see that unit 1 is in state 1,
states 2 and 3 are still in state 0, unit 4 is in state 0 and unit 5 is in state 2,
so Y0(0.92) = 3. Thereby we have

Â01(t) = 0 for t ∈ [0, 0.11),

Â01(t) = 1
5 for t ∈ [0.11, 0.53),

Â01(t) = 1
5 + 1

5 = 2
5 for t ∈ [0.53, 0.92),

Â01(t) = 1
5 + 1

5 + 1
3 = 11

15 t ∈ [0.92, 1.0].

A plot of Â01(t) for t ∈ [0, 1.0] is shown in Figure 1.

b) To find P̂(0.50, 0.75) we need first to find all event times in the time interval
t ∈ (0.50, 1.0]. These event times are t = 0.53 and 0.57. Thereby we have

P̂(0.50, 0.75) = (I + ∆Â(0.53))(I + ∆Â(0.57))

At time t = 0.53 we observe a transition from state 0 to state 1, and we have
as previously discussed Y0(0.53) = 5, so

∆Â(0.53) =

 −1
5

1
5 0

0 0 0
0 0 0


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At time t = 0.57 we observe at transition from state 0 to state 2, and we
have Y0(0.57) = 4, so

∆Â(0.57) =

 −1
4 0 1

4
0 0 0
0 0 0


We thereby get

P̂(0.50, 0.75) =

 1 − 1
5

1
5 0

0 1 0
0 0 1

 ·

 1 − 1
4 0 1

4
0 1 0
0 0 1



=


4
5

1
5 0

0 1 0
0 0 1

 ·


3
4 0 1

4
0 1 0
0 0 1



=


3
5

1
5

1
5

0 1 0
0 0 1

.


